How to setup a development environment

From IGEP - ISEE Wiki

Jump to: navigation, search

This tutorial was written for the igep revB board, but it is transposable to other OMAP3530 boards (above all for the DSP part). It is a summary (with some adaptations) of several tutorials found on Internet (see References). All files will be installed in the $HOME directory.

link={{{link}}} A newer version of this information may be available: Visit the IGEP SDK Virtual Machine for updated information


This section describes how to obtain the Poky distribution. This is the distribution shipped with the igep board; it is based on Open Embedded.

The first thing to do is set Bash as default sh shell:

sudo dpkg-reconfigure dash

answer no to the question. Thus, "/bin/sh" will point towards "/bin/bash" (and not "/bin/dash"). Then, some kernels settings have to be changed. Edit the file "/etc/sysctl.conf" as root and set :

vm.mmap_min_addr = 0

then, to take the modification into account:

sudo sysctl -p

Some additional packages need to be installed to satisfy bitbake dependencies. First, add the following repositories to "/etc/apt/sources.list" :

deb etch/
deb unstable/
deb feisty/
deb gutsy/
deb hardy/

Update the data base and install the following packages:

sudo apt-get update
sudo aptitude install python-psyco hgsvn qemu poky-depends poky-scripts

Then, download and decompress the last stable version of Poky:

mkdir -p $HOME/igep/poky
cd $HOME/igep/poky
tar -xjf poky-purple-3.2.tar.bz2

The configuration file of Poky is located in the directory $HOME/igep/poky/build/conf :

cd build/conf
nano local.conf

And paste the modified version for the igep board:

# Where to cache the files Poky downloads
DL_DIR ?= "${OEROOT}/sources"
    ${OEROOT}/meta/packages/*/*.bb \

BBFILE_COLLECTIONS = "normal moblin"
BBFILE_PATTERN_normal = "^${OEROOT}/meta/"
BBFILE_PATTERN_moblin = "^${OEROOT}/meta-moblin/"

BBFILE_PRIORITY_normal = "5"
BBFILE_PRIORITY_moblin = "5"

# Uncomment and set to allow bitbake to execute multiple tasks at once.
# For a quadcore, BB_NUMBER_THREADS = "4", PARALLEL_MAKE = "-j 4" would
# be appropriate.
# Also, make can be passed flags so it run parallel threads e.g.:
# PARALLEL_MAKE = "-j 2"

# The machine to target
MACHINE ?= "igep0020b"

TARGET_FPU_arm ?= "hard"

# Other supported machines
#MACHINE ?= "qemux86"
#MACHINE ?= "qemuarm"
#MACHINE ?= "c7x0"
#MACHINE ?= "akita"
#MACHINE ?= "spitz"
#MACHINE ?= "nokia770"
#MACHINE ?= "nokia800"
#MACHINE ?= "fic-gta01"
#MACHINE ?= "bootcdx86"
#MACHINE ?= "cm-x270"
#MACHINE ?= "em-x270"
#MACHINE ?= "htcuniversal"
#MACHINE ?= "mx31ads"
#MACHINE ?= "mx31litekit"
#MACHINE ?= "mx31phy"
#MACHINE ?= "netbook"
#MACHINE ?= "zylonite"

DISTRO ?= "poky"
# For bleeding edge / experimental / unstable package versions
# DISTRO ?= "poky-bleeding"

# Poky has various extra metadata collections (openmoko, extras).
# To enable these, uncomment all (or some of) the following lines:
# BBFILES = "\
#    ${OEROOT}/meta/packages/*/*.bb \
#    ${OEROOT}/meta-extras/packages/*/*.bb \
#    ${OEROOT}/meta-openmoko/packages/*/*.bb \
#    ${OEROOT}/meta-moblin/packages/*/*.bb \
#    "
# BBFILE_COLLECTIONS = "normal extras openmoko moblin"
# BBFILE_PATTERN_normal = "^${OEROOT}/meta/"
# BBFILE_PATTERN_extras = "^${OEROOT}/meta-extras/"
# BBFILE_PATTERN_openmoko = "^${OEROOT}/meta-openmoko/"
# BBFILE_PATTERN_moblin = "^${OEROOT}/meta-moblin/"
# BBFILE_PRIORITY_normal = "5"
# BBFILE_PRIORITY_extras = "5"
# BBFILE_PRIORITY_openmoko = "5"
# BBFILE_PRIORITY_moblin = "5"


# EXTRA_IMAGE_FEATURES allows extra packages to be added to the generated images
# (Some of these are automatically added to certain image types)
# "dbg-pkgs"     - add -dbg packages for all installed packages
#                  (adds symbol information for debugging/profiling)
# "dev-pkgs"     - add -dev packages for all installed packages
#                  (useful if you want to develop against libs in the image)
# "tools-sdk"      - add development tools (gcc, make, pkgconfig etc.)
# "tools-debug"    - add debugging tools (gdb, strace)
# "tools-profile"  - add profiling tools (oprofile, exmap, lttng valgrind (x86 only))
# "tools-testapps" - add useful testing tools (ts_print, aplay, arecord etc.)
# "debug-tweaks"   - make an image for suitable of development
#                    e.g. ssh root access has a blank password
# There are other application targets too, see meta/classes/poky-image.bbclass
# and meta/packages/tasks/ for more details.

EXTRA_IMAGE_FEATURES = "tools-debug tools-profile tools-testapps debug-tweaks"

# The default IMAGE_FEATURES above are too large for the mx31phy and
# c700/c750 machines which have limited space. The code below limits
# the default features for those machines.
EXTRA_IMAGE_FEATURES_c7x0 = "tools-testapps debug-tweaks"
EXTRA_IMAGE_FEATURES_mx31phy = "debug-tweaks"
EXTRA_IMAGE_FEATURES_mx31ads = "tools-testapps debug-tweaks"

# A list of packaging systems used in generated images
# The first package type listed will be used for rootfs generation
# include 'package_deb' for debs
# include 'package_ipk' for ipks
#PACKAGE_CLASSES ?= "package_deb package_ipk"
PACKAGE_CLASSES ?= "package_ipk"

# POKYMODE controls the characteristics of the generated packages/images by
# telling poky which type of toolchain to use.
# Options include several different EABI combinations and a compatibility
# mode for the OABI mode poky previously used.
# The default is "eabi"
# Use "oabi" for machines with kernels < 2.6.18 on ARM for example.
# Use "external-MODE" to use the precompiled external toolchains where MODE
# is the type of external toolchain to use e.g. eabi.
# POKYMODE = "external-eabi"

# Uncomment this to specify where BitBake should create its temporary files.
# Note that a full build of everything in OpenEmbedded will take GigaBytes of hard
# disk space, so make sure to free enough space. The default TMPDIR is
# <build directory>/tmp
TMPDIR = "${OEROOT}/build/tmp-${MACHINE}"

# Uncomment this if you are using the Openedhand provided qemu deb - see README
ASSUME_PROVIDED += "qemu-native"

# Comment this out if you don't have a 3.x gcc version available and wish
# poky to build one for you. The 3.x gcc is required to build qemu-native.
#ASSUME_PROVIDED += "gcc3-native"

# Uncomment these two if you want BitBake to build images useful for debugging.

# Uncomment these to build a package such that you can use gprof to profile it.
# NOTE: This will only work with 'linux' targets, not
# 'linux-uclibc', as uClibc doesn't provide the necessary
# object files.  Also, don't build glibc itself with these
# flags, or it'll fail to build.
# LDFLAGS =+ "-pg"

# Uncomment this if you want BitBake to emit debugging output
# BBDEBUG = "yes"
# Uncomment this if you want BitBake to emit the log if a build fails.

# Specifies a location to search for pre-generated tarballs when fetching
# a cvs:// or svn:// URI.  Uncomment this, if you do not want to pull directly
# from CVS or Subversion

# Set this if you wish to make pkgconfig libraries from your system available
# for native builds. Combined with extra ASSUME_PROVIDEDs this can allow
# native builds of applications like oprofileui-native (unsupported feature).
#EXTRA_NATIVE_PKGCONFIG_PATH = ":/usr/lib/pkgconfig"
#ASSUME_PROVIDED += "gtk+-native libglade-native"


# The architecture to build SDK items for, by setting this you can build SDK
# packages for architectures other than the host i.e. building i586 packages
# on an x86_64 host.
# Supported values are i586 and x86_64

The following section needs to be adapted to the number of CPU the host machine has:

# Uncomment and set to allow bitbake to execute multiple tasks at once.
# For a quadcore, BB_NUMBER_THREADS = "4", PARALLEL_MAKE = "-j 4" would
# be appropriate.
# Also, make can be passed flags so it run parallel threads e.g.:
# PARALLEL_MAKE = "-j 2"

The build environment needs to be setup by the following command:

cd ../..
source poky-init-build-env

A target can be built using:

bitbake <target>

there is a lot of targets, which can be an image (take a look at the "meta/packages/images/" directory) or more simply a recipe corresponding to a software. A detailed list of images can be found on the Poky Handbook. To build an image without X11 server:

bitbake poky-image-base

This step is very long (several hours) and take a lot of space (like 16 gigas) on the host's hard disk. If you are behind a proxy, take a look at this part of Poky's FAQ.

If everything compiles well, the resulting image (rootfs and kernel) will be placed in the directory:


and .ipk packages in:


We will see in section Boot on rootfs and kernel how to use it. Yet, bitbake will download by default the kernel "linux-omap-" which is not the last one provided by ISEE. See section Kernel compilation to compile another version.

TODO: modify recipes to download another kernel version

Cross toolchain for the ARM

Aparently, there is a bug in one of Poky's recipes, which implies that the cross toolchain doesn't include automatically the C++ headers, see this thread. A patch has been proposed; to apply it :

cd $HOME/igep/poky
patch -p1 < fix-gxx-include-dir.patch

The cross toolchain can be built using bitbake:

source poky-init-build-env
bitbake meta-toolchain-sdk

The result will be placed in the directory:


as an archive to decompress in the directory "/usr/local/poky".

In order to cross compile code for the ARM, the following script needs to be run to set up paths:

source /usr/local/poky/eabi-glibc/environment-setup-arm-none-linux-gnueabi

Kernel compilation

Another more recent source of information can be found at

In this example the kernel version "linux-omap-" is used. Check in the download section of which is the last stable one. More recent versions (but unstable) can be downloaded on the git of ISEE.

Kernel compilation under bitbake

Kernel compilation outside bitbake

First, download the kernel sources:

cd $HOME/igep
tar -xzf linux-omap-
cd linux-omap-

Configure the kernel:

source /usr/local/poky/eabi-glibc/environment-setup-arm-none-linux-gnueabi
make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- igep0020b_defconfig
make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- menuconfig

The last line is only needed if you want to customize the kernel.

To compile kernel and modules:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- uImage modules

The resulting image is placed in "arch/arm/boot" directory.
Note: If there is no uImage file present you may not have installed the uboot-mkimage package.
In ubuntu Hardy (8.04), this package is unknown. First upgrade to e.g. Lucid (10.04) then install the package.

We will see in the section Boot on the rootfs and the kernel how to use kernel and modules.

Boot on the rootfs and the kernel

There are several methods to do it. For developing purposes, the easiest way is to boot over network, which avoid flashing operations or coping on the memory card. Yet, these two solutions are essentials for applications where the board need to be independent from the host computer.

Over network

Two servers are needed. The NFS (Network File System) server allows the target to accede its rootfs by the network. The TFTP (Trivial File Transfer Protocol) server allows the target to download the kernel over network. Thus, UBoot needs to be correctly setup to boot on the correct files. To do this, plug a serial cable on the board (115200n8) and stop UBoot by pressing a key. The environment variable of UBoot we need to change are:

  • serverip: the server's IP address, need to be on the 192.168.254.x subnet (except if you change the board address, which is not explained here). By default, the server's IP address is
  • distro: the distribution's name, by default poky.
  • machine: the card's name, by default igep0020b.
  • project: the project's name, that is to say the rootfs generated previously.

To change a variable, use the command setenv. Thus, to change the project's name and use the one we have just made, set:

setenv project poky-image-base

Then, to boot:

run bootcmd

which will execute the contents of the bootcmd variable. The 'printenv' command allow to show the content of a variable; for example:

printenv bootcmd

returns by default:

run mmc-boot; run nfs-boot; run onenand-boot

That is to say the board will first check if a memory card is present to boot with it. If memory card is not present, the board will ping the server to boot over the network. If the server does not answer, the board will boot on the flash.
Take a look at mmc-boot, nfs-boot and onenand-boot variables for more details. In addition, the factory settings of UBoot are given here.

In order to save UBoot environment variables in the flash, do:


which will avoid to reenter it every time...

Once <serverip>, <distro>, <project>, and <machine> variables setup, UBoot will search on the server of address <serverip>:

  • a kernel image uImage in the directory "/srv/tftp/<distro>/<project>/<machine>" accessible by TFTP.
  • a rootfs in the directory "/srv/nfs/<distro>/<project>/<machine>" accessible by NFS.

We assume now that <distro>=poky, <project>=poky-image-base and <machine>=igep0020b.

Thus, create the following directories on the host:

sudo mkdir -p /srv/nfs/poky/poky-image-base/igep0020b
sudo mkdir -p /srv/tftp/poky/poky-image-base/igep0020b

Make sure the access rights of the directory is set correctly (use e.g. chmod 777 <dir>).
If not correct, uBoot will complain on the uBoot terminal when trying to load the kernel or on access of the rootfs.

Next, copy the kernel. If it was made outside bitbake:

sudo cp $HOME/igep/linux-omap- /srv/tftp/poky/poky-image-base/igep0020b/

or if it was made with the rootfs or underbitbake:

sudo cp $HOME/igep/poky/build/tmp-igep0020b/deploy/images/uImage /srv/tftp/poky/poky-image-base/igep0020b/

Next, install the rootfs in the good directory:

pushd /srv/nfs/poky/poky-image-base/igep0020b
sudo cpio -idm< $HOME/igep/poky/build/tmp-igep0020b/deploy/images/poky-image-base-igep0020b.cpio 

If kernel was built outside bitbake, install kernel modules in the rootfs as follows:

cd $HOME/igep/linux-omap-
source /usr/local/poky/eabi-glibc/environment-setup-arm-poky-linux-gnueabi
make ARCH=arm CROSS_COMPILE=arm-poky-linux-gnueabi- modules_install INSTALL_MOD_PATH=/srv/nfs/poky/poky-image-base/igep0020b

Finally, install the two servers on host:

sudo apt-get install tftpd nfs-kernel-server

By default, the TFTP server shares the "/srv/tftp" directory, which is the one we are using. If necessary, you can change this by editing the "/etc/inetd.conf" file :

#:BOOT: TFTP service is provided primarily for booting.  Most sites
#       run this only on machines acting as "boot servers."
tftp            dgram   udp     wait    nobody  /usr/sbin/tcpd  /usr/sbin/in.tftpd /srv/tftp

The configuration file of NFS server is "/etc/exports". Add the following line for each rootfs :

# Poky image rootfs
/srv/nfs/<distro>/<project>/<machine>       <target_ip>(rw,no_root_squash,no_subtree_check,sync)

where <target_ip> is the ip address of the target. By default, igep address is It is also possible to put an asterisk (*) to allow a wider range of addresses. In our case, write :

/srv/nfs/poky/poky-image-base/igep0020b       *(rw,no_root_squash,no_subtree_check,sync)

Remember execute the command:

$ exportfs -a 

Every time that you modify/update the file /etc/exports.

Note: In the rootfs on the nfs-server I had to remove the line "auto eth0" from the file /etc/network/interfaces. If this line is present, the boot process stops with the error:
nfs: server not responding, still trying

Copy kernel and rootfs in flash memory

Copy can be done either from uboot or linux. To copy the rootfs, a jffs2 file is needed. If you do not need any modification to the one created previously, you can jump next step. If you have made changes to the rootfs (for example when using it for NFS boot), you will have to build the jffs2 file from the rootfs directory.

Create the jffs2 file

The following package needs to be installed to create the jffs2 file:

sudo apt-get install mtd-utils

Then use the command:

mkfs.jffs2 -r <root file system> -e <erase block size> -o <output file> 

where <root file system> is the path to the directory to copy (ie /srv/nfs/poky/poky-image-base/igep0020b), <erase block size> is the block size to erase in KB and <output file> name of the output file. Block size can be seen with the following command:

cat /proc/mtd

On igep, it returns:

dev:    size   erasesize  name
mtd0: 00080000 00040000 "X-Loader"
mtd1: 00180000 00040000 "U-Boot"
mtd2: 00080000 00040000 "U-Boot Env"
mtd3: 00300000 00040000 "Kernel"
mtd4: 1fa80000 00040000 "File System"

Thus, the size is 0x40000=256KB.

Copy from uboot

Copy from linux

To do this, you will have to boot the card from nfs or memory card; but not from flash.

Partitions can be seen with the following command:

cat /proc/mtd

On igep, it returns:

dev:    size   erasesize  name
mtd0: 00080000 00040000 "X-Loader"
mtd1: 00180000 00040000 "U-Boot"
mtd2: 00080000 00040000 "U-Boot Env"
mtd3: 00300000 00040000 "Kernel"
mtd4: 1fa80000 00040000 "File System"

To copy the kernel, erase the corresponding memory area before doing the copy:

flash_eraseall /dev/mtd3
nandwrite -p /dev/mtd3 uImage

same thing for the rootfs

flash_eraseall /dev/mtd4
nandwrite -p /dev/mtd4 rootfs.jffs2

Note that if you are using the rootfs built previously, the corresponding file should be located there:


And now reboot. In case of errors (such as bad crc on the kernel for example), it is necessary to reflash all, see this.

Copy kernel and rootfs in memory card

Cross toolchain for the DSP

Nota: some of the software of this section need an account on TI website. The main page for the downloads is this one.

Code generation tools

TI CGT is the cross compiler for the DSP. Download last version here and install it (for example in $HOME/TI/TI_CGT directory).


DSP BIOS is the operating system running on the DSP. Download it from here and install it (for example in $HOME/TI/BIOS directory).

XDC Tools

Download it from here and install it (for example in $HOME/TI/xdctools directory). XDC Tools is needed for DSP Link compilation.

DSP Link

DSPLink allows communication between ARM and DSP. Download it from here. Uncompress it into the $HOME/igep/dsplink directory.

Then, add an environment variable DSPLINK with the path to the directory of DSPLINK. For exemple, edd the following line to .bashrc file: (remember to log out/log in after this)

export DSPLINK=$HOME/igep/dsplink_linux_1_63/dsplink

go to $(DSPLINK)/config/bin directory and execute:

perl --platform=OMAP3530 --nodsp=1 --dspcfg_0=OMAP3530SHMEM --dspos_0=DSPBIOS5XX --gppos=OMAPLSP --comps=PONSLRMC

This will configure DSPLINK. To understand each of the option we passed, run:


and add options one by one. If everything is alright, the following message will appear:

Please edit the following files for toolchains, kernel sources, etc changes.
GPP side distribution file: $DSPLINK/make/Linux/
GPP side distribution file: $DSPLINK/gpp/src/
DSP side distribution file: $DSPLINK/make/DspBios/

which are the files we need to edit and adapt to our configuration.

For $DSPLINK/make/Linux/ file, change (and adapt if needed) the following values:

#   ============================================================================
#   Set the values of necessary variables to be used for the OS.
#   ============================================================================

#   ----------------------------------------------------------------------------
#   Base directory for the GPP OS
#   ----------------------------------------------------------------------------
BASE_BUILDOS   :=${HOME}/igep/linux-omap-

#   ----------------------------------------------------------------------------
#   Base for toolchain
#   ----------------------------------------------------------------------------
BASE_TOOLCHAIN := /usr/local/poky/eabi-glibc

#   ----------------------------------------------------------------------------
#   Base directory for include files provided by GPP OS
#   ----------------------------------------------------------------------------
BASE_OSINC     := $(BASE_BUILDOS)/include

OSINC_PLATFORM := $(BASE_TOOLCHAIN)/lib/gcc/arm-poky-linux-gnueabi/4.3.3/include
OSINC_TARGET   := $(BASE_TOOLCHAIN)/arm-poky-linux-gnueabi/libc/usr/include

#   ============================================================================
#   ============================================================================

#   ----------------------------------------------------------------------------
#   Name of the compiler
#   ----------------------------------------------------------------------------
COMPILER       := $(BASE_CGTOOLS)/arm-poky-linux-gnueabi-gcc
LD             := $(BASE_CGTOOLS)/arm-poky-linux-gnueabi-ld

CROSS_COMPILE  := arm-poky-linux-gnueabi-

#   ============================================================================
#   ARCHIVER2 - This denotes the archiver.
#   ============================================================================
ARCHIVER       := $(BASE_CGTOOLS)/arm-poky-linux-gnueabi-ar

#   ============================================================================
#   LINKER - The compiler is used for linking purpose as well.
#   ============================================================================
LINKER     := $(BASE_CGTOOLS)/arm-poky-linux-gnueabi-gcc

For $DSPLINK/gpp/src/ file, change (and adapt if needed):

ifeq ("$(TI_DSPLINK_PLATFORM)", "OMAP3530")
KERNEL_DIR    := ${HOME}/igep/linux-omap-
TOOL_PATH     := /usr/local/poky/eabi-glibc/bin
endif #ifeq ("$(TI_DSPLINK_PLATFORM)", "OMAP3530")

and also:

ifeq ("$(TI_DSPLINK_GPPOSPREFIX)", "uc")
CG_PREFIX = arm-linux-uclibcgnueabi-
MAKE_OPTS = ARCH=arm CROSS_COMPILE=$(TOOL_PATH)/arm-linux-uclibcgnueabi-
CG_PREFIX = arm-poky-linux-gnueabi-
MAKE_OPTS = ARCH=arm CROSS_COMPILE=$(TOOL_PATH)/arm-poky-linux-gnueabi-
endif # ifeq ("$(TI_DSPLINK_GPPOSPREFIX)", "uc")

Finally, for $DSPLINK/make/DspBios/ file, change (and adapt if needed):

#   ----------------------------------------------------------------------------
#   Base directory for the DSP OS
#   ----------------------------------------------------------------------------
BASE_SABIOS     := $(BASE_INSTALL)/bios_5_41_03_17
BASE_BUILDOS    := $(BASE_SABIOS)/packages/ti/bios

#   ----------------------------------------------------------------------------
#   Base directory for the XDC tools
#   ----------------------------------------------------------------------------
XDCTOOLS_DIR    := $(BASE_INSTALL)/xdctools_3_15_00_50

#   ----------------------------------------------------------------------------
#   Base for code generation tools - compiler, linker, archiver etc.
#   ----------------------------------------------------------------------------

Then, go to the $DSPLINK/dsp/src directory and execute:

make -s

do the same in $DSPLINK/gpp/src directory:

make -s

this will compile dsplinkk.ko module (it will be placed in the $DSPLINK/gpp/export/BIN/Linux/OMAP3530/RELEASE directory).

Attention: You may encounter compilations problems with SZ_2K symbol. In this case modify all the files causing problem by replacing SZ_2K occurences by (2*SZ_1K).

Some examples programs are located in the $DSPLINK/dsp/src/samples and $DSPLINK/gpp/src/samples directories. Compile it with:



NOTA: versions 2.25 and have problems with ioctl see here, which affect cache manipulations (writeback and invalidate). Version should solve these problems (not tested). Otherwise, you can use 2.24 versions.

CMEM, or contiguous memory manager allows to allocate shared memory between ARM and DSP. It is part of the linuxutils, download it from here and decompress it. Go to linuxutils_2_25_02_08/packages/ti/sdo/linuxutils/cmem directory. Remove the write protection to Rules.make file:

chmod +w Rules.make

Then edit it and change (adapt it if needed):

# For "kernel_org" builds

# Equivalent path for uClibc compiler tools

# For OMAP3530 2.6.29 Linux kernel

Then execute

make release

to compile cmemk.ko module (it will be placed in ./src/module directory).

Framework Components

Framework Components include some libraries like DMAN3 and ACPY3, allowing DMA copy. Download it from here and decompress it for example in $HOME/TI/framework_components_2_24_01 directory.

Local Power Manager (LPM)

LPM also belongs to the Linux Utilities, but it seems that it is no longer included in the newest versions. So, you can download it from here.

LPM allows to reset the DSP. Indeed, by default, DSPLink keeps in the cache memory the program executed by the DSP. So, the same application can be executed several times, but if a new applications is run, the DSP will crash; that is why we need LPM.

Go to the local_power_manager_1_24/packages/ti/bios/power/modules/omap3530/lpm directory end edit the Makefile to change:

LINUXKERNEL_INSTALL_DIR = $(HOME)/igep/linux-omap-
MVTOOL_PREFIX = /usr/local/poky/eabi-glibc/bin/arm-poky-linux-gnueabi-
DSPLINK_REPO = $(HOME)/igep/dsplink_linux_1_63

the compile


the lpm_omap3530.ko module will be placed in the current directory.

The lpmON.x470uC and lpmOFF.x470uC executables are already compiled and can be found in the following directories:



or in the following directories: (for the latest versions of LPM)



Note: if you get compiler errors like:

TI/local_power_manager_linux_1_24_02_09/packages/ti/bios/power/modules/omap3530/lpm/lpm_driver.c: In function 'lpm_open':
TI/local_power_manager_linux_1_24_02_09/packages/ti/bios/power/modules/omap3530/lpm/lpm_driver.c:474: error: implicit declaration of function 'kmalloc'
TI/local_power_manager_linux_1_24_02_09/packages/ti/bios/power/modules/omap3530/lpm/lpm_driver.c:474: warning: assignment makes pointer from integer without a cast
TI/local_power_manager_linux_1_24_02_09/packages/ti/bios/power/modules/omap3530/lpm/lpm_driver.c:500: error: implicit declaration of function 'kfree'

please add:

#include <linux/slab.h>

to lpm_driver.c.


The interesting libraries are the followings:

Note that for dsplib v210, the linux link seems to be broken. From Windows version, you will have to change C64x+DSPLIB/dsplib_v210/dsplib64plus.h files. Indeed, all relative paths are in Windows notation (eg "\"), which you will have to change to "/".

Configure DSPLINK to compile projects

This part explains how to add libraries to DSPLINK environment.


Edit file $DSPLINK/make/DspBios/ and add the includes directories:

#   ----------------------------------------------------------------------------
#   Base directory for include files
#   ----------------------------------------------------------------------------
BASE_OSINC      := $(BASE_BUILDOS)/include
BASE_RTDXINC    := $(BASE_RTDX)/include/c6000
BASE_PSLINC     := $(BASE_PSL)/include
BASE_XDCINC	:= $(BASE_INSTALL)/xdctools_3_15_00_50/packages
BASE_FCINC	:= $(BASE_INSTALL)/framework_components_2_24_01/packages
BASE_FCTOOLINC	:= $(BASE_INSTALL)/framework_components_2_24_01/fctools/packages
BASE_IMGLIBINC	:= $(BASE_INSTALL)/imglib_v201/include
BASE_IQMATHINC	:= $(BASE_INSTALL)/IQmath_v213/include


The variables OSINC_GENERIC and OSINC_PLATFORM allow to setup the directories where DSPLINK will look for .h files.


By defualt, DSPLINK is searching the libraries in the directories:


Thus, you have to copy the libraries in the right place:

cp $HOME/TI/framework_components_2_24_01/packages/ti/sdo/fc/dman3/lib/debug/dman3.a64P $DSPLINK/dsp/BUILD/OMAP3530_0/EXPORT/DEBUG/
cp $HOME/TI/framework_components_2_24_01/packages/ti/sdo/fc/dman3/lib/release/dman3.a64P $DSPLINK/dsp/BUILD/OMAP3530_0/EXPORT/RELEASE/
cp $HOME/TI/framework_components_2_24_01/packages/ti/sdo/fc/acpy3/lib/debug/acpy3.a64P $DSPLINK/dsp/BUILD/OMAP3530_0/EXPORT/DEBUG/
cp $HOME/TI/framework_components_2_24_01/packages/ti/sdo/fc/acpy3/lib/release/acpy3.a64P $DSPLINK/dsp/BUILD/OMAP3530_0/EXPORT/RELEASE/
cp $HOME/TI/imglib_v201/lib/target/imglib2.l64P $DSPLINK/dsp/BUILD/OMAP3530_0/EXPORT/DEBUG/
cp $HOME/TI/imglib_v201/lib/target/imglib2.l64P $DSPLINK/dsp/BUILD/OMAP3530_0/EXPORT/RELEASE/

Configure CodeBlocks for ARM

This part explains how to setup CodeBlocks to develop programs using dsplink library.

Go to settings/compiler and debugger menu, choose GNU ARM GCC compiler as compiler. You should see the following window:


Select Search directories tab and Compiler. Then add the following directories (and adapt it if necessary):


Which should give the following result:


Choose Toolchain executables tab and Compiler's installations directory:


Then, enter the Program Files as follows:



Poky Handbook

Building DSPLink

Compiling CMEM