User:Pau pajuelo

From IGEP - ISEE Wiki

Revision as of 16:59, 28 August 2012 by Pau (talk | contribs) (Handle the gpio-LED's)

Jump to: navigation, search

TODO:

Update peripheral tutorials, finish gpio example program

Categorize new tutorials

Finish tutorials below

Upgrade IGEP Technology Devices Guides

Link all development tools documentation when possible (do a diagram)

Prove Log into IGEPv2 via Ethernet interface in new firmware

How to manage the kernel modules on Linux

How do I edit my kernel command line

Basic Software instructions

Getting started with IGEP COM PROTON


Overview

This is the 1/3 chapter of IGEP COM PROTON Tutorial Guide.

In this first chapter, we will learn how to connect IGEP COM PROTON and how to log into IGEP COM PROTON via USB.

Requirements

In this tutorial we are going to use the following peripherals:

  • IGEP COM PROTON
  • An USB Cable mini-B
  • USB Hub with external power supply
  • A PC

Getting started

Power up IGEP COM PROTON

IGEP COM PROTON with HUB.JPG
IGEP COM PROTON for standalone operation (without expansion boards) can be supplied using a 5V DC through USB 2.0 OTG connector. Use an USB Hub with external power supply.







Log into IGEP COM PROTON via USB Ethernet Gadget interface

Information.jpg In non-Linux operating system, use IGEP SDK Virtual Machine to connect to IGEP COM PROTON via USB
  • In the file /etc/network/interfaces, you should add:
iface usb0 inet dhcp
  • Plug an USB Type-A to USB Type-A mini cable between your host PC and the USB OTG from IGEP device. Use a powered USB Hub if you use IGEP COM MODULE or PROTON Board.
  • If you use IGEP SDK VM you need to attach the removable device RNDIS driver.
  • Type in a terminal:
sudo ifup usb0
  • Revise that:
jdoe@ubuntu ~ $ ifconfig
...
usb0      Link encap:Ethernet  HWaddr 66:cc:f2:be:51:b6  
          inet addr:192.168.7.10  Bcast:192.168.7.255  Mask:255.255.255.0
          inet6 addr: fe80::64cc:f2ff:febe:51b6/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:14 errors:0 dropped:0 overruns:0 frame:0
          TX packets:44 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:2496 (2.4 KB)  TX bytes:8794 (8.7 KB)
...
  • Connect to IGEP device
jdoe@ubuntu ~ $ ssh root@192.168.7.1
The authenticity of host '192.168.7.1 (192.168.7.1)' can't be established.
ECDSA key fingerprint is 80:be:2d:b6:fe:b1:09:c3:3b:ac:0f:1d:f2:43:f2:20.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.7.1' (ECDSA) to the list of known hosts.
root@igep00x0:~# uname -a
Linux igep00x0 2.6.37 #1 Thu Jul 19 09:07:47 CEST 2012 armv7l GNU/Linux
root@igep00x0:~# 


You have successfully completed this chapter of the guide.


Igep forum.png If you have any question, don't ask to ask at the IGEP Community Forum or the IGEP Community Chat Irc.png

What can I do with IGEP COM PROTON



Overview

This is the 2/3 chapter of IGEP COM PROTON Tutorial Guide.

We will learn some basic tasks such to send a file between IGEP COM PROTON and your PC , handle the IGEP COM Leds, update the pre-installed software to the latest release, etc.

What can I do

Handle the gpio-LED's

Basic

Log into IGEP COM PROTON (for example via SSH, as shown in the previous chapter), and run the following commands to turn LED's on:

echo 1 > /sys/devices/platform/leds-gpio/leds/d242\:green/brightness
echo 1 > /sys/devices/platform/leds-gpio/leds/d441\:green/brightness
echo 1 > /sys/devices/platform/leds-gpio/leds/d442\:green/brightness

You can turn them down using the same command and write '0' instead of '1'.


Know more

IGEP COM PROTON LED's are controlled with it's platform device at /sys/devices/platform/leds-gpio/leds/

If you want to trigger the leds you can enable this mode and select the trigger source (none by default) to: mmc0, mmc1, timer, heartbeat and default-on.

To enable any of this modes you just have to change a parameter in the directory of the led you want to control. You can see all the possibilities using the instruction 'cat':

$   cat /sys/devices/platform/leds-gpio/leds/d242\:green/trigger

[none] nand-disk mmc0 timer heartbeat backlight gpio default-on

In the example above, we have checked the status of the trigger in led d242:green. Mode 'none' is selected.

To change it, for example, to the timer mode you can use 'echo':

echo timer > /sys/devices/platform/leds-gpio/leds/d242\:green/trigger

In this case, we have set the trigger to the 'timer' mode. Now you can set the time for what the led is ON and the time it is OFF using:

echo 250 > /sys/devices/platform/leds-gpio/leds/d242\:green/delay_on
echo 750 > /sys/devices/platform/leds-gpio/leds/d242\:green/delay_off

Now the selected led is configured with a timer consisting of 250 miliseconds ON and 750 miliseconds OFF.


igep.ini parameters

The kernel command line syntax is name=value1. These next parameters are supported in igep.ini since IGEP-X_Loader 2.4.0-2:

[kernel]

Parameter Name Description Default value Comments
kaddress Kernel copy address =0x80008000 Hex memory address
rdaddress Ram Disk location address =0x81600000 Hex memory address;
disabled by default
serial.low Serial number (low part) =00000001 Numeric
serial.high Serial number (high part) =00000000 Numeric
revision Revision ID =0003 Numeric
kImageName Kernel, binary image name =zImage Kernel or binary image name
kRdImageName Kernel RAM Disk Image Name - Ram Disk image name
MachineID Machine ID (kernel ID)  ;IGEPv2
=2344
 ;Module
=2717
;Proton
=3203
Mode Boot Mode  ;Linux kernel
=kernel
 ;Other image (like uboot)
[binary image]

[kparams]

Parameter Name Description Default value Comments
buddy Enable/disable expansion board support  ;IGEPv2 Expansion Board support
=igep0022
 ;Berlin and Paris Expansion Board support
=base0010
New York Expansion
=ilms0015
console Setup the kernel console parameters =ttyO2,115200n8 -
earlyprintk Enable early printk - -
mem Setup the Board Memory Configuration =430M -
boot_delay Setup the boot delay =0 -
mpurate Setup ARM Processor Speed - -
loglevel Setup the loglevel - -
debug Enable kernel debug output - -
fixrtc Fix RTC variable - -
nocompcache Configure nocompcache variable =1 -
omapfb.mode Configure frame bugger configuration =dvi:hd720-16@50  ;Other configuration
=dvi:1280x720MR-16@60
vram Configure Video RAM assigned to every frame buffer - -
omapfb.vram Configure Video RAM assigned to every frame buffer - -
omapfb.debug Configure frame buffer debug output - -
omapdss.debug Configure DSS Video debug output - -
smsc911x.mac0 Configure Board Ethernet Mac Address =0xb2,0xb0,0x14,0xb5,0xcd,0xde For IGEP BERLIN
smsc911x.mac1 Configure Board Ethernet Mac Address =0xb2,0xb0,0x14,0xb5,0xcd,0xdf For IGEP BERLIN (only with IGEP PROTON)
smsc911x.mac Configure Board Ethernet Mac Address =0xb2,0xb0,0x14,0xb5,0xcd,0xde For IGEPv2, IGEP PROTON, IGEP PARIS and IGEP BERLIN
ubi.mtd Fot UBI FS boot - -
root Configure root directory for MMC, NFS or UBI  ;For mmc memory
=/dev/mmcblk0p2 rw rootwait
 ;For flash memory
=/dev/mtdblock2
nfsroot For NFS boot - -
rootfstype For UBI FS boot - -
ip For NFS boot - -
init Assign init program - -
musb_hdrc.debug USB debug - -
musb_hdrc.use_dma USB over network - -
libertas.libertas_debug Configure libertas debug - -
board.ei485 Enable/disable RS485  ;Enable RS485
=yes
 ;Disable RS485
=no
board.modem Enable/disable GPRS modem  ;Enable modem (IGEPv2 Expansion)
=no
 ;Enable modem (IGEPv2 Expansion)
=yes
buddy.revision Enable hardware buddy revision [A or B] Only for base0010
=A
Only for base0010
=B

How to use GPIOs (update it)

Overview

This How-To is meant to be a starting point for people to learn use GPIOs for IGEP v2 devices as quickly and easily as possible. For this how-to i used Linaro Headless with Kernel 2.6.35.y, Ubuntu 10.04 with Linaro Toolchain, IGEP v2 RC5 and GPIO driver.

There are more ways to use GPIOs in IGEP v2, but this one is very simple.

Feedback and Contributing

At any point, if you see a mistake you can contribute to this How-To.

Compile GPIO driver source code via Host

Download GPIO driver and Kernel 2.6.35.y source code. Extract files.

Edit GPIO driver Makefile's:

-In files: $/app/Makefile and $/lib/Makefile, make sure that your CROSS_COMPILE path is correct.

-In file: $/modules/Makefile, make sure that your CROSS_COMPILE path is correct and type your Kernel 2.6.35.y path.

We will use the ncurses program for set up Kernel configuration, if you don't have this program installed then you must install it with this command:

sudo apt-get install ncurses-dev 

-Go to kernel path and type:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- igep00x0_defconfig

Exit Linux Kernel Configuration an return to Bash. Type:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- modules_prepare

File $/include/generated/autoconf.h was created

Finally compile GPIO driver, go to main Makefile path and compile all source code using make command.

Send binaries created from Host to Igep v2.

Install binaries via IGEP

Log with root user to install binaries.

Install module

Go to:$/modules and insert user-gpio-drv.ko into linux kernel with the following command:

insmod user-gpio-drv.ko

Check that user-gpio-drv.ko is currently loaded with the following command:

lsmod

The result will be similar at that:

root@localhost:~/gpio-driver/module# lsmod
Module                  Size  Used by
user_gpio_drv           1639  0 
omap_wdt                3411  0 
spidev                  4198  0 
iommu                   8558  0 
rtc_twl                 4411  0 
rtc_core               11187  1 rtc_twl
twl4030_keypad          2970  0 

The module is loaded until system halt.

Install shared library

Go to:$/lib. libgpio.so is here.

If a program is linked with shared libraries, Kernel seek in specific paths when program is executed. Now is necessary link the libgpio.so path to the environment variable LD_LIBRARY_PATH, use the following command:

export LD_LIBRARY_PATH=/root/gpio-driver/lib/

Check that libgpio.so is linked correctly. Go to:$/gpio-driver/app, gpio program is here. Type next command:

ldd gpio 

ldd command, print shared library dependencies. The result will be similar at that:

root@localhost:~/gpio-driver/app# ldd gpio
	libgpio.so => /root/gpio-driver/lib/libgpio.so (0x40197000)
	libc.so.6 => /lib/libc.so.6 (0x401a0000)
	/lib/ld-linux.so.3 (0x4008a000)

The shared library is linked until system halt. Now you can execute gpio example program.

Testing driver

To make sure than driver works well, make the next test. I used GPIO_136(sdmmc2_dat4) and GPIO_137(sdmmc2_dat5) because IGEP v2 RC5(without WIFI) don't use them by default:

NOTE: For more information visit this page (under construction).

Configure Mux

Go to:/sys/kernel/debug/omap_mux, and change this mux configuration:

echo 0x104>sdmmc2_dat4
echo 0x104>sdmmc2_dat5

Use cat command to check it:

cat sdmmc2_dat4
cat sdmmc2_dat5

The result will be similar at that:

root@localhost:/sys/kernel/debug/omap_mux# cat sdmmc2_dat4
name: sdmmc2_dat4.gpio_136 (0x48002164/0x134 = 0x0104), b ae4, t NA
mode: OMAP_PIN_INPUT | OMAP_MUX_MODE4
signals: sdmmc2_dat4 | sdmmc2_dir_dat0 | NA | sdmmc3_dat0 | gpio_136 | NA | NA | safe_mode

and

root@localhost:/sys/kernel/debug/omap_mux# cat sdmmc2_dat5
name: sdmmc2_dat5.gpio_137 (0x48002166/0x136 = 0x0104), b ah3, t NA
mode: OMAP_PIN_INPUT | OMAP_MUX_MODE4
signals: sdmmc2_dat5 | sdmmc2_dir_dat1 | cam_global_reset | sdmmc3_dat1 | gpio_137 | hsusb3_tll_stp | mm3_rxdp | safe_mode

Note: OMAP_PIN_INPUT=Input/Output pin and OMAP_PIN_OUTPUT=Output pin, for Read/Write test you need the first one. GPIO is configured in mode 4.

Read/Write test

Link GPIO_136 and GPIO_137 with a wire, these pins are located in J990 connector with numbers 7 and 9. I use the next connector to join them:

Connector used readwrite test.JPG
All connected readwrite test.JPG


Now type next code:

root@localhost:~/gpio-driver/app# ./gpio input 136
root@localhost:~/gpio-driver/app# ./gpio output 137 0
root@localhost:~/gpio-driver/app# ./gpio get 136     
0
root@localhost:~/gpio-driver/app# ./gpio output 137 1
root@localhost:~/gpio-driver/app# ./gpio get 136     
1
root@localhost:~/gpio-driver/app# 

The results (CMOS Voltages: 0V-1V8):

GPIO value0 readwrite test.JPG
GPIO value1 readwrite test.JPG


The code above shows that driver works properly, GPIO_136 is configured like input and GPIO_137 is configured like output with value 0, when read GPIO_136 the result is 0. To make sure that works well, configure GPIO_137 with value 1, now GPIO_136 reads 1.
This driver have more options like IRQ, but is not explained here.

How to use UARTs (update it)

Overview

This How-To is meant to be a starting point for people to learn use UART for IGEPv2 devices as quickly and easily as possible. In this how-to, we use Linaro Headless with Kernel 2.6.35.y and UART test program

More information about UART.

Note: This program has a debug option using GPIOs to debug via oscilloscope, this option is useful to learnt about the Kernel latencies. Debug has set to "write" and "select" functions.

More information

Feedback and Contributing

At any point, if you see a mistake you can contribute to this How-To.

Preparing IGEP

Configure UART1 and UART3 in IGEP with RS232 levels on J960 connector

To test UARTs we use UART1 (dev/ttyS0) and UART3 (dev/ttyS2) via J960 connector using RS232 standard.

NOTE: Make sure that you installed open SSH server. If you don't have it go here.

By default, UART1 is used by RS485 driver, we need to disable it, edit igep.ini file:

board.ei485= yes

UART1 is configured in RS232 driver, when igep line is replaced by (or type in -Maybe you don't found this line-):

board.ei485= no

By default, UART3 is used by Kernel serial console, we need to disable it, go to igep.ini file, comment next line:

console=ttyS2,115200n8

Check UARTs devices

Make sure that Kernel detects UARTs, type:

dmesg | grep tty

The result will be similar at that:

root@localhost:~/PROGRAM# dmesg | grep tty
[    0.000000] console [tty0] enabled
[    0.598999] serial8250.0: ttyS0 at MMIO 0x4806a000 (irq = 72) is a ST16654
[    0.784057] serial8250.1: ttyS1 at MMIO 0x4806c000 (irq = 73) is a ST16654
[    0.969085] serial8250.2: ttyS2 at MMIO 0x49020000 (irq = 74) is a ST16654
[    1.153503] serial8250.3: ttyS3 at MMIO 0x49042000 (irq = 80) is a ST16654
root@localhost:~/PROGRAM# 

Get information about UARTs, type:

setserial -g /dev/ttyS[0123]

The result will be similar at that:

root@localhost:~/PROGRAM# setserial -g /dev/ttyS*
/dev/ttyS0, UART: 16654, Port: 0x0000, IRQ: 72
/dev/ttyS1, UART: 16654, Port: 0x0000, IRQ: 73
/dev/ttyS2, UART: 16654, Port: 0x0000, IRQ: 74
/dev/ttyS3, UART: 16654, Port: 0x0000, IRQ: 80
root@localhost:~/PROGRAM# 

If you don't have setserial installed type:

apt-get install setserial

NOTE: Starting from Kernel 2.6.37.y, ttySx are named ttyOx. You need to edit source program.

Connect peripherals

Connect IGEPv2 board using J960 connector like this:

J960    
                   ------  
   (Not used) x---| 1  2 |---o (Connect to 8)
(Connect to 9) o---| 3  4 |---x (Not used)
        (GND)·|---| 5  6 |---|· (GND)
    (Not used)x---| 7  8 |---o (Connect to 2)
(Connect to 3) o---| 9 10 |---x (Not used)
                   ------

Send some data

Use minicom to prove it, open two terminals via SSH and log with root user:

Terminal 1:

minicom -D /dev/ttyS0

Terminal 2:

minicom -D /dev/ttyS2 

Type something in one terminal.

Minicom screenshot.png

Schematics

RS232 Schematic Igep V2

RS232 Schematic Igep V2.png


Uart Schematic Igep Module

Uart Schematic Igep Module.png

Compile and run program

Download program source.

As explained above, the program uses GPIO for debug option via oscilloscope, it is necessary install user-gpio-drv.ko driver inside Linux Kernel, more information here .

There are some interesting things to configure, before compiling the program. Open it, seek next lines:

//Define Array char size
#define SIZE 30
//Define Debug mode:0==Disable
#define DEBUG 0

//Define wait select
#define WAIT 5

//Set GPIO Debugger port
//Be sure that mux is correctly configured and GPIOs are not used
#define GPIO1 136
#define GPIO2 137 

Constant SIZE: it determines the max number of char than can be sent

Constant DEBUG: it can break program infinite loop part, it can be useful to debug some errors, 0 (infinite loop) or positive number determine loop max entrances

Constant WAIT: it configurea select max time.

Constants GPIO1 and GPIO2: they configure GPIOs used for debug via oscilloscope. Take care to configure mux and don't use them for other purposes

Once you have installed module. Compile program using your Cross Compiler, I used arm-linux-gnueabi-:

arm-linux-gnueabi-gcc uart-test-beta1.c -o uart-test-beta1 

Testing UART

Some tests do it:

Decode Characters

Decoded with ASCII table.

Uart decode1withlf.JPG Uart decode0withlf.JPG Uart decode100000withlf.JPG
Decoding "1\n" Decoding "0\n" Decoding "100000\n"

Click to enlarge image

select timeout

Program sends information via UART1 but don't receive response via UART3, because only a process is executed. This problem is repeated every 5 seconds (constant WAIT=5) until other process sends information via UART3 at the same speed. If "select" hasn't been implemented, process would have stayed blocked.

Uart select timeout9.JPG
UART1=Blue and UART3=Green

Click to enlarge image

RS232 Voltage params

More information here.

Uart voltageparams8.JPG
Vpp=11.8V aprox , Vmin=-5.6V aprox

Click to enlarge image

Speed Overview

Note that wave is degraded when speed is higher

Uart 300 o.JPG Uart 4800 o.JPG Uart 115200 o.JPG Uart 3000000 o.JPG
Overview signal to 300 bauds Overview signal to 4800 bauds Overview signal to 115200 bauds Overview signal to 3000000 bauds
Uart 300 s.JPG Uart 4800 s.JPG Uart 115200 s.JPG Uart 3000000 s.JPG
Specific wave to 300 bauds Specific wave to 4800 bauds Specific wave to 115200 bauds
Specific wave to 3000000 bauds

Click to enlarge image

Lag

You can see that RS232 have some lag between transmisions. This caused mainly by kernel process management. UART peripheral is controlled by Linux and It isn't a real-time operating system

Uart lag left6.JPG Uart lag right7.JPGselect: blocked until all data is available.
Lag between UART1 and UART3 (300 bauds) Lag between UART3 and UART1 (300 bauds)

Click to enlarge image

This program have three I/O functions that connect to UART driver via ioctl: (read(), write() and select()). But select() and write() change process stat to sleep mode until system don't receive or transmit all information via UART. "select" function is used to prevent that read function can be blocked when data aren't available.
The next images (program with debug_gpio enabled and 300 bauds speed) show when process is executed or is waiting. Blue=UART1, Violet="write" and Green="select". When GPIO has HIGH value, process is blocked.

Uart select5.JPG Uart select to write1.JPG Uart write2.JPG Uart write to select0.JPG
select function time Time between select and write write function time Time between write and select

Click to enlarge image

In this case:

select: blocked until all data is available (LF char received).

write: blocked until all data is send to UART buffer.

Error test

Every full process the number is increased twice. Program checks that this condicion is true, if it isn't accomplished, process will be finish.

Uart error test2.png
Runs 16h without any transfer error (3000000 bauds)