Difference between revisions of "The IGEP X-loader"

From IGEP - ISEE Wiki

Jump to: navigation, search
(Download from git repository)
 
(29 intermediate revisions by 6 users not shown)
Line 1: Line 1:
= Summary<br><br>  =
+
=Summary=
 +
X-Loader, an initial program loader for Embedded boards based on OMAP processors.
  
X-Loader, an initial program loader for Embedded boards based on OMAP processors. <br>
+
Access to the latest version&nbsp;[http://git.isee.biz/?p=pub/scm/igep-x-loader.git;a=summary here] and read the [http://git.isee.biz/?p=pub/scm/igep-x-loader.git;a=blob_plain;f=ISEE_README.txt;h=909c072bc2512026342d802b3ef1b7e8f703458b;hb=4bb2ebd99d5b86522d786ac5b074066e9841799c ISEE_Readme.txt] for get the latest release information.
  
Access to the latest version (release 2.5.0-2)&nbsp;[http://git.igep.es/?p=pub/scm/igep-x-loader.git;a=summary here] and read the [http://git.isee.biz/?p=pub/scm/igep-x-loader.git;a=blob;f=ISEE_README.txt;h=e64607a2c7b461539623ca45c3aad3ea8d136ef6;hb=fb3723de3fcbd99a555fb07170d2806dfe00c553 ISEE_Readme.txt] for get the latest release information.
+
=Why IGEP-Xloader=
 +
Some important reasons exist for using this bootloader on IGEP boards.
  
= Why IGEP-Xloader  =
+
==Security==
 +
This is one of the most important reasons why we develop this new IGEP X-loader. you will Probably know that flash devices get new bad memory blocks with normal usage that can make unusable or can damange the software residing inside the flash (ex: upgrading the software, copying a new kernel ... ), in these cases your board won't be usable anymore if you don't use a right nand filesystem that insures data integrity. Using the old schema we've 4 important partitions on flash without any protection, x-loader, u-boot, u-boot enviroment and kernel.
  
Some important reasons exist for using this bootloader on IGEP boards.  
+
IGEP X-loader resolves this situation as the configuration and kernel files reside inside a jffs2 partition.
  
== Security  ==
+
==Maintenance==
 +
With the old schema 3 different software existed (x-loader, u-boot, kernel) that did exactly the same job, so you had to reconfigure the board, increasing the complexity of maintenance for the board system and provide a major bug source because we had to assure that all software was aligned with all changes. Also, from a second point of view, we did the job three times so the boot process was more complex and slow.
  
This is one of the most important reasons why we develop this new IGEP X-loader. you will Probably know that flash devices get new bad memory blocks with normal usage that can make unusable or can damange the software residing inside the flash (ex: upgrading the software, copying a new kernel ... ), in these cases your board won't be usable anymore if you don't use a right nand filesystem that insures data integrity. Using the old schema we've 4 important partitions on flash without any protection, x-loader, u-boot, u-boot enviroment and kernel.  
+
==Easy to use==
 +
With this new approach use the software it's more easy to use, if you've the boot information stored inside a jffs2 partition you can use the linux kernel to access it directly without the use of any flash tool to modify the software (ex: using nandwrite it's to risky due to its inability to guarantee data integrity over the Nand Flash memory).
  
IGEP X-loader resolves this situation as the configuration and kernel files reside inside a jffs2 partition.  
+
==Upgrade faster and easy==
 +
Upgradint to a new kernel it's easier and faster, you only need to copy the new kernel inside the boot partition, copy your new igep.ini inside and reboot the board with all security.
  
== Mantenience  ==
+
=Features and Limitations=
 +
==Improvements &amp; Modifications==
 +
* Added malloc/free functionality.
 +
* Added mtd framework and onenand support, removed the old onenand drivers.
 +
* Added fs jffs2 support using mtd &amp; onenand support (Read Only).
 +
* Added crc32 and zlib.
 +
* Jffs2 zlib compression support (Read Only).
 +
* Dual boot mmc &amp; onenand with mmc highest priority.
 +
* Added Linux kernel boot directly (Support for 2.6.22 and highest version kernels)
 +
* Linux kernel supported images: vmlinuz, bzImage and zImage.
 +
* Support for loading Linux Ram disk (EXPERIMENTAL)
 +
* Added "ini" files parser.
 +
* The configuration resides in a plain txt (ini format file).
 +
* Support Windows &amp; Linux formating ini files.
 +
* boot from mmc, onenand, or mix with mmc highest priority.
 +
* Added codeblocks project and compilation rules.
 +
* Added support for vfat32 extra names.
 +
* Configure TPS65950 voltage to 1.35V if it's used a DM3730 processor.
 +
* Added new parameter MachineID in kernel tag file, with it you can
 +
* &nbsp;&nbsp;&nbsp; - configure the kernel board ID setup
 +
* Added new parameter buddy for kernels 2.6.35.y and 2.6.37.y
 +
* Optimize some LPDDR Memory configuration values
 +
* Removed some OneNand Debug information
 +
* Removed some FAT incorrect warnings
 +
* Added Support Initial Ram disk
 +
* Reconfigure Makefile options
 +
* Support Kernels 2.6.35, 2.6.37, 3.6.4
 +
* Added support for boot ARM binary files (such u-boot or QNX kernel)
 +
* Support for Numonyx, Micron and hynix POP Memories.
 +
* Memory autodetection.
 +
* Added GPTimer functionality.
 +
* Support Numonyx, Micron and hynix memories.
 +
* DMA Copy support
 +
* Omtimized memcpy and memset functions.
 +
* DSS Video driver.
 +
* Support ISEE toolchain yocto 1.2 based.
  
With the old schema 3 different software existed (x-loader, u-boot, kernel) that did exactly the same job, so you had to reconfigure the board, increasing the complexity of mantenience for the board system and provide a major bug source because we had to assure that all software was aligned with all changes. Also, from a second point of view, we did the job three times so the boot process was more complex and slow.  
+
==Limitations==
 +
* The ini configuration file it's limited to max size: 16 KiB
 +
* Kernel Command line parameters it's limited to: 4 KiB
 +
* Malloc it's hardcode limited to 32 MiB.
 +
* Video is limited to 1024 x 768 x 16 bits.
 +
* Video Memory is limited to 1280 x 720 x 32 bits.
  
== Easy to use  ==
+
==TODO==
 +
* Remove compilation warnings.
 +
* System Rescue.
 +
* Improve boot selection and priority.
 +
* Remove unused code.
  
With this new approach use the software it's more easy to use, if you've the boot information stored inside a jffs2 partition you can use the linux kernel to access it directly without the use of any flash tool to modify the software (ex: using nandwrite it's to risky due to its inability to guarantee data integrity over the Nand Flash memory).
+
==STATUS==
 +
* Support:
 +
** IGEPv2 DM3730
 +
** IGEPv2 OMAP3530
 +
** IGEP COM MODULE DM3730
 +
** IGEP COM PROTON DM3730
 +
** IGEP COM MODULE AM3703
  
== Upgrade faster and easy  ==
+
==VERSION CHANGES==
 +
[2.1.0-1] This version only can be build with gcc linaro 4.5.2 other compilers be not supported.
  
Upgradint to a new kernel it's easier and faster, you only need to copy the new kernel inside the boot partition, copy your new igep.ini inside and reboot the board with all security.  
+
[2.1.0-1] Removed some uncontrolled "printf" with incorrect information.
  
= Features and Limitations<br>  =
+
[2.1.0-1] Modified some code under __DEBUG__ option.
  
== Improvements &amp; Modifications  ==
+
[2.1.0-1] Added Support for TPS65950-A3 initialization at 1.35V
  
*Added malloc/free functionality.
+
[2.1.0-1] Added support for IGEP Module 0030
*Added mtd framework and onenand support, removed the old onenand drivers.
 
*Added fs jffs2 support using mtd &amp; onenand support (Read Only).
 
*Added crc32 and zlib.
 
*Jffs2 zlib compression support (Read Only).
 
*Dual boot mmc &amp; onenand with mmc highest priority.
 
*Added Linux kernel boot directly (Support for 2.6.22 and highest version kernels)
 
*Linux kernel supported images: vmlinuz, bzImage and zImage.
 
*Support for loading Linux Ram disk (EXPERIMENTAL)
 
*Added "ini" files parser.
 
*The configuration resides in a plain txt (ini format file).
 
*Support Windows &amp; Linux formating ini files.
 
*boot from mmc, onenand, or mix with mmc highest priority.
 
*Added codeblocks project and compilation rules.
 
*Added support for vfat32 extra names.
 
*Configure TPS65950 voltage to 1.35V if it's used a DM3730 processor.
 
*Added new parameter MachineID in kernel tag file, with it you can<br>
 
*&nbsp;&nbsp;&nbsp; - configure the kernel board ID setup
 
*Added new parameter buddy for kernels 2.6.35.y and 2.6.37.y
 
*Optimize some LPDDR Memory configuration values
 
*Removed some OneNand Debug information
 
*Removed some FAT incorrect warnings<br>
 
*Added Support Initial Ram disk
 
*Reconfigure Makefile options
 
*Support Kernels 2.6.35, 2.6.37, 3.6.4<br>
 
*Added support for boot ARM binary files (such u-boot or QNX kernel)
 
*Support for Numonyx, Micron and hynix POP Memories.
 
*Memory autodetection.<br>
 
*Added GPTimer functionality.
 
*Support Numonyx, Micron and hynix memories.
 
*DMA Copy support
 
*Omtimized memcpy and memset functions.
 
*DSS Video driver.
 
*Support ISEE toolchain yocto 1.2 based.
 
  
== Limitations<br>  ==
+
[2.1.0-1] Added support dynamic Machine ID selection (same xloader boot IGEPv2 &amp; IGEP Module)
  
*The ini configuration file it's limited to max size: 16 KiB
+
----
*Kernel Command line parameters it's limited to: 4 KiB
 
*Malloc it's hardcode limited to 32 MiB.<br>
 
*Video is limited to 1024 x 768 x 16 bits.
 
*Video Memory is limited to 1280 x 720 x 32 bits.
 
  
== TODO<br>  ==
+
[2.1.0-2] ARM Compilation bug resolved
 +
 
 +
----
  
*Remove compilation warnings.<br>
+
[2.1.0-3] Update SDRAM structure initialization
*System Rescue.
 
*Improve boot selection and priority.
 
*Remove unused code.
 
  
== STATUS<br>  ==
+
[2.1.0-3] Added support for Initial RAM disk
  
*Support all IGEP boards.
+
[2.1.0-3] Updated Initial RAM disk destination address
  
== VERSION CHANGES<br>  ==
+
----
  
[2.1.0-1] This version only can be build with gcc linaro 4.5.2 other compilers be not supported.<br>
+
[2.2.0-1] Update Makefile structure
  
[2.1.0-1] Removed some uncontrolled "printf" with incorrect information.<br>
+
[2.2.0-1] Downgrade the boot processor speed
  
[2.1.0-1] Modified some code under __DEBUG__ option.<br>
+
----
  
[2.1.0-1] Added Support for TPS65950-A3 initialization at 1.35V<br>
+
[2.3.0-1] Add NAND flash devices and Micron MT29CXGXXMAXX memories support
  
[2.1.0-1] Added support for IGEP Module 0030<br>
+
[2.3.0-2] Add Hynix NAND memorie and IGEP0032 support
  
[2.1.0-1] Added support dynamic Machine ID selection (same xloader boot IGEPv2 &amp; IGEP Module)<br>
+
[2.3.0-2] Added lzo compression schema.
  
 
----
 
----
  
[2.1.0-2] ARM Compilation bug resolved<br>
+
[2.3.0-3] Add Support for execute ARM binaries [2.3.0-3] Bug Fixes related to I and D Cache
  
 
----
 
----
  
[2.1.0-3] Update SDRAM structure initialization<br>
+
[2.4.0-1] Added Memory test feature
  
[2.1.0-3] Added support for Initial RAM disk<br>
+
[2.4.0-1] Added some boot information
  
[2.1.0-3] Updated Initial RAM disk destination address
+
[2.4.0-1] New read_nand_cache function optimized for load from NAND
  
----
+
[2.4.0-1] BUG resolved: Refresh Setup in Micron &amp; Hynix Memories
  
[2.2.0-1] Update Makefile structure
+
[2.4.0-1] BUG resolved: Reset Memory controller after initialize Malloc function
  
[2.2.0-1] Downgrade the boot processor speed<br>
+
[2.4.0-1] BUG resolved: Resolve problems updating the flash content under jffs2
  
 
----
 
----
  
[2.3.0-1] Add NAND flash devices and Micron MT29CXGXXMAXX memories support
+
[2.4.0-2] Resolved Memory Autodetection
  
[2.3.0-2] Add Hynix NAND memorie and IGEP0032 support
+
[2.4.0-2] Better hang board led control
  
[2.3.0-2] Added lzo compression schema.
+
[2.4.0-2] New read_nand_cache function optimized for load from OneNand
  
----
+
[2.4.0-2] Added Hw GPtimer functionality
 
 
[2.3.0-3] Add Support for execute ARM binaries [2.3.0-3] Bug Fixes related to I and D Cache
 
  
 
----
 
----
  
[2.4.0-1] Added Memory test feature
+
[2.5.0-1] Added System DMA driver.
  
[2.4.0-1] Added some boot information
+
[2.5.0-1] Added optimized memcpy &amp; memset functions.
  
[2.4.0-1] New read_nand_cache function optimized for load from NAND
+
[2.5.0-1] Improved boot speed.
  
[2.4.0-1] BUG resolved: Refresh Setup in Micron &amp; Hynix Memories
+
[2.5.0-1] Improve NAND driver support.
  
[2.4.0-1] BUG resolved: Reset Memory controller after initialize Malloc function
+
[2.5.0-1] Auto x-loader.bin.ift and MLO generation.
  
[2.4.0-1] BUG resolved: Resolve problems updating the flash content under jffs2
+
[2.5.0-1] Added DSS video support.
  
 
----
 
----
  
[2.4.0-2] Resolved Memory Autodetection
+
[2.5.0-2] Fixed System DMA misconfiguration.
  
[2.4.0-2] Better hang board led control
+
[2.5.0-2] Improve GPMC timming setup.
  
[2.4.0-2] New read_nand_cache function optimized for load from OneNand
+
[2.5.0-2] Added DSS igep.ini variables.
  
[2.4.0-2] Added Hw GPtimer functionality<br>
+
[2.5.0-2] Added Support for new memory capacities.
  
----
+
[2.5.0-2] Auto x-loader.bin.ift and MLO generation.
  
[2.5.0-1] Added System DMA driver.  
+
[2.5.0-2] Minor bug fixes.
  
[2.5.0-1] Added optimized memcpy &amp; memset functions.
+
----
 
 
[2.5.0-1] Improved boot speed.
 
 
 
[2.5.0-1] Improve NAND driver support.
 
 
 
[2.5.0-1] Auto x-loader.bin.ift and MLO generation.
 
  
[2.5.0-1] Added DSS video support.<br>
+
[2.5.0-3] platform.S: downgrade MPU boot clock from 1GHz to 800 MHz
  
 
----
 
----
  
[2.5.0-2] Fixed System DMA misconfiguration.
+
[2.6.0-1] Remove OMAP35xx support
  
[2.5.0-2] Improve GPMC timming setup.
+
[2.6.0-1] New DMA driver, now can handle different DMA channels and transfers
  
[2.5.0-2] Added DSS igep.ini variables.
+
[2.6.0-1] GPMC: Add support for use prefetch engine
  
[2.5.0-2] Added Support for new memory capacities.
+
[2.6.0-1] NAND: Added a new Nand driver
  
[2.5.0-2] Auto x-loader.bin.ift and MLO generation.
+
[2.6.0-1] NAND: Modify memory setup timmings
  
[2.5.0-2] Minor bug fixes.
+
----
  
= Pre-Compiled Binaries  =
+
[2.6.0-2] DMA: disable dma_memcpy function due random kernel memory corruption
  
{| cellspacing="1" cellpadding="1" width="905" border="1" style=""
+
=Pre-Compiled Binaries=
 +
{| border="1" width="905" cellspacing="1" cellpadding="1"
 
|-
 
|-
! scope="col" | Release  
+
! scope="col"|Release
! scope="col" | Download link  
+
! scope="col"|Download link
! scope="col" | Support
+
! scope="col"|Support
 
|-
 
|-
| 2.4.0-2  
+
||2.6.0-2
| [http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.4.0-2.tar.bz2 igep-x-loader-2.4.0-2.tar.bz2]  
+
||[http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.6.0-2.tar.bz2 igep-x-loader-2.6.0-2.tar.bz2]
| All Boards
+
||[[The_IGEP_X-loader#STATUS | DM3730 Boards]]
 
|-
 
|-
| 2.1.0-2  
+
||2.5.0-2
| [http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.1.0-2.tar.bz2 igep-x-loader-2.1.0-2.tar.bz2]  
+
||[http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.5.0-2.tar.bz2 igep-x-loader-2.5.0-2.tar.bz2]
| All Boards
+
||[[The_IGEP_X-loader#STATUS | All OMAP3 Boards]]
 
|-
 
|-
| 2.1.0-3
+
||2.4.0-2
| [http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.1.0-3.tar.bz2 igep-x-loader-2.1.0-3.tar.bz2]  
+
||[http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.4.0-2.tar.bz2 igep-x-loader-2.4.0-2.tar.bz2]
| All Boards
+
||[[The_IGEP_X-loader#STATUS | All OMAP3 Boards]] except IGEP COM MODULE AM3703
 
|-
 
|-
| 2.2.0-1  
+
||2.1.0-2
| [http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.2.0-1.tar.bz2 igep-x-loader-2.2.0-1.tar.bz2]  
+
||[http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.1.0-2.tar.bz2 igep-x-loader-2.1.0-2.tar.bz2]
| All Boards
+
||[[The_IGEP_X-loader#STATUS | All OMAP3 Boards]] except IGEP COM MODULE AM3703
 +
|-
 +
||2.1.0-3
 +
||[http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.1.0-3.tar.bz2 igep-x-loader-2.1.0-3.tar.bz2]
 +
||[[The_IGEP_X-loader#STATUS | All OMAP3 Boards]] except IGEP COM MODULE AM3703
 +
|-
 +
||2.2.0-1
 +
||[http://downloads.isee.biz/pub/releases/IGEP_xloader/igep-x-loader-2.2.0-1.tar.bz2 igep-x-loader-2.2.0-1.tar.bz2]
 +
||[[The_IGEP_X-loader#STATUS | All OMAP3 Boards]] except IGEP COM MODULE AM3703
 
|}
 
|}
  
= Build Procedure<br>  =
+
=Build Procedure=
 +
==Build with ISEE SDK Yocto Toolchain 1.2==
 +
===Download and Install the cross compiler if you not do it before.===
 +
Download the toolchain from this [https://www.isee.biz/support/downloads/item/igep-sdk-yocto-toolchain-1-2-2-3 link] and uncompress it as root in your / directory.
  
== Build with ISEE SDK Yocto Toolchain 1.2 ==
 
 
=== Download and Install the cross compiler if you not do it before.<br>  ===
 
 
Download the toolchain from this [http://www.isee.biz/component/zoo/item/igep-yocto-toolcahin-sdk link] and uncompress it as root in your / directory.
 
 
<pre>Hint: Remember setup the enviroment before build the source:
 
<pre>Hint: Remember setup the enviroment before build the source:
  
 
source /opt/poky/1.2/environment-setup-armv7a-vfp-neon-poky-linux-gnueabi</pre>
 
source /opt/poky/1.2/environment-setup-armv7a-vfp-neon-poky-linux-gnueabi</pre>
  
=== Download the sources from our git repository ===
+
===Download the sources from our git repository===
<pre>$ git clone git://git.isee.biz/pub/scm/igep-x-loader.git
+
<pre>git clone git://git.isee.biz/pub/scm/igep-x-loader.git
</pre>  
+
</pre>
=== Get your desired tag / release ===
+
===Get your desired tag / release===
 +
git checkout &lt;your_desired_release&gt; -b &lt;your_name_release&gt;
  
git checkout &lt;your_desired_release&gt; -b &lt;your_name_release&gt;<br>
+
<pre>git checkout release-2.5.0-2 -b release-2.5.0-2-local
<pre>$ git checkout release-2.5.0-2 -b release-2.5.0-2-local
 
 
</pre>
 
</pre>
  
=== Setup the board build setup<br>  ===
+
===Setup the board build setup===
<pre>make igep00x0_config</pre>  
+
<pre>make igep00x0_config</pre>
=== Build the software<br>  ===
+
===Build the software===
<pre>make</pre>  
+
<pre>make</pre>
=== Sign the binary x-loader (Only versions prior to 2.5.0-x)<br>  ===
+
===Sign the binary x-loader (Only versions prior to 2.5.0-x)===
 +
''You should execute contrib/signGP for sign the xloader.''
  
''You should execute contrib/signGP for sign the xloader.''
 
 
<pre>contrib/signGP x-load.bin
 
<pre>contrib/signGP x-load.bin
 
The signed x-loader it's named: x-load.bin.ift
 
The signed x-loader it's named: x-load.bin.ift
 
</pre>
 
</pre>
  
== Build Native ==
+
==Build Native==
 +
===Download from git repository===
 +
git clone https://git.isee.biz/arm-boot/igep-x-loader.git 
 +
git checkout &lt;your_desired_release&gt; -b &lt;your_name_release&gt;
  
=== Download from git repository  ===
+
<pre style="font-weight: normal;"> git checkout release-2.5.0-2 -b release-2.5.0-2-local
<pre style="font-weight: normal;">$ git clone git://git.isee.biz/pub/scm/igep-x-loader.git
+
</pre>
</pre>
+
 
git checkout &lt;your_desired_release&gt; -b &lt;your_name_release&gt;<br>
+
===Configure the board settings===
<pre style="font-weight: normal;">$ git checkout release-2.4.0-2 -b release-2.4.0-2-local
+
<pre>make igep00x0_config</pre>
</pre>  
+
<pre>Edit the variable CFLAGS and add the option: -fno-stack-protector
=== Configure the board settings ===
+
CFLAGS&nbsp;:= $(CPPFLAGS) -Wall -Wstrict-prototypes -fno-stack-protector</pre>
<pre>make igep00x0_config</pre><pre>Edit the variable CFLAGS and add the option: -fno-stack-protector
+
===Build===
CFLAGS&nbsp;:= $(CPPFLAGS) -Wall -Wstrict-prototypes -fno-stack-protector</pre>  
+
<pre>make CROSS_COMPILE=arm-none-linux-gnueabi-</pre>
=== Build<br>  ===
+
===Sign the binary x-loader===
<pre>make CROSS_COMPILE=arm-none-linux-gnueabi-</pre>  
+
''You should execute contrib/signGP for sign the xloader.''
=== Sign the binary x-loader ===
 
  
''You should execute contrib/signGP for sign the xloader.''
 
 
<pre>contrib/signGP x-load.bin
 
<pre>contrib/signGP x-load.bin
 
The signed x-loader it's named: x-load.bin.ift
 
The signed x-loader it's named: x-load.bin.ift
</pre>  
+
</pre>
= BOOT<br>  =
+
=BOOT=
 
+
The IGEP X-Loader must reside in the microSD card or in the Nand Memory.
The IGEP X-Loader must reside in the microSD card or in the Nand Memory.<br>
 
 
 
== MMC Boot  ==
 
  
=== Prepare the microsd card ===
+
==MMC Boot==
 +
===Prepare the microsd card===
 +
You can follow this howto about how [http://code.google.com/p/beagleboard/wiki/LinuxBootDiskFormat prepare the microsd card] or [[How to boot from MicroSD Card]]
  
You can follow this howto about how [http://code.google.com/p/beagleboard/wiki/LinuxBootDiskFormat prepare the microsd card] or [[How to boot from MicroSD Card]]<br>
+
Get a new microsd card and create two partitions, the first one must be fat16/32 and the second one can be formated in any format type supported by linux kernel.
  
Get a new microsd card and create two partitions, the first one must be fat16/32 and the second one can be formated in any format type supported by linux kernel.<br>
+
===Copy the files in the first (FAT) partition===
 +
In the first partition you must copy in this order:
  
=== Copy the files in the first (FAT) partition  ===
+
# x-loader.bin.ift (you must rename this file to MLO before copy it) / This is a signed image using contrib/signGP tool
 +
# x-loader configuration file [http://git.igep.es/?p=pub/scm/igep-x-loader.git;a=blob;f=scripts/igep.ini;h=ce093fe80c81d8888bf79464f847059b312bba83;hb=HEAD igep.ini]&nbsp;also you can change the configuration file name editing the file:&nbsp;[http://git.igep.es/?p=pub/scm/igep-x-loader.git;a=blob;f=include/configs/igep00x0.h igep00x0.h]&nbsp;(#define IGEP_BOOT_CFG_INI_FILE "igep.ini")
 +
# Your desired kernel image.
  
In the first partition you must copy in this order:  
+
Load Order:
  
#x-loader.bin.ift (you must rename this file to MLO before copy it) / This is a signed image using contrib/signGP tool
 
#x-loader configuration file [http://git.igep.es/?p=pub/scm/igep-x-loader.git;a=blob;f=scripts/igep.ini;h=7ecda91b2716d8984d48fa6c5eb5c74b8f0b0959;hb=HEAD igep.ini]&nbsp;also you can change the configuration file name editing the file:&nbsp;[http://git.igep.es/?p=pub/scm/igep-x-loader.git;a=blob;f=include/configs/igep00x0.h igep00x0.h]&nbsp;(#define IGEP_BOOT_CFG_INI_FILE "igep.ini")
 
#Your desired kernel image.
 
 
Load Order:
 
 
<pre>  48 /* Linux Images */
 
<pre>  48 /* Linux Images */
 
   49 const char* LinuxImageNames [] = {
 
   49 const char* LinuxImageNames [] = {
Line 289: Line 305:
  
 
or you can set the name for your kernel in the configuration file using the tag: kImageName
 
or you can set the name for your kernel in the configuration file using the tag: kImageName
</pre>  
+
</pre>
Don't use a uImage kernel format (from uboot), only standard kernel formats be supported.  
+
Don't use a uImage kernel format (from uboot), only standard kernel formats be supported.
  
'''kernel build command example''':  
+
'''kernel build command example''':
<pre>$make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- zImage modules
 
</pre>
 
=== Second Partition  ===
 
  
Copy all your rootfs in this second partition.
+
<pre>make ARCH=arm CROSS_COMPILE=arm-poky-linux-gnueabi- zImage modules
 +
</pre>
  
Also you can use the [http://releases.linaro.org/platform/linaro-m/headless/final/linaro-m-headless-tar-20101108-2.tar.gz linaro 10.11 minimal image]&nbsp;download the image and untar (as root) in your microsd card second partition.  
+
===Second Partition===
 +
Copy all your rootfs in this second partition.
  
Remember install the kernel modules in this partition.  
+
Also you can use the [http://releases.linaro.org/platform/linaro-m/headless/final/linaro-m-headless-tar-20101108-2.tar.gz linaro 10.11 minimal image]&nbsp;download the image and untar (as root) in your microsd card second partition.
  
Example:
+
Remember install the kernel modules in this partition.
<pre>sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- modules_install INSTALL_MOD_PATH=[path to your target rootfs]
 
</pre>
 
== Nand Boot  ==
 
  
=== Nand Partitions<br>  ===
+
Example:
 +
 
 +
<pre>sudo make ARCH=arm CROSS_COMPILE=arm-poky-linux-gnueabi- modules_install INSTALL_MOD_PATH=[path to your target rootfs]
 +
</pre>
 +
 
 +
==Nand Boot==
 +
===Nand Partitions===
 +
We've defined 3 partitions on the Nand Memory.
  
We've defined 3 partitions on the Nand Memory.
 
 
<pre>MTD partitions on "omap2-onenand":
 
<pre>MTD partitions on "omap2-onenand":
 
(a) 0x000000000000-0x000000080000&nbsp;: "X-Loader"
 
(a) 0x000000000000-0x000000080000&nbsp;: "X-Loader"
 
(b) 0x000000080000-0x000000c80000&nbsp;: "Boot"
 
(b) 0x000000080000-0x000000c80000&nbsp;: "Boot"
 
(c) 0x000000c80000-0x000020000000&nbsp;: "File System"
 
(c) 0x000000c80000-0x000020000000&nbsp;: "File System"
</pre>  
+
</pre>
==== X-Loader Partition ====
+
====X-Loader Partition====
 +
* Not fs formated (onenand raw)
 +
* Size: 0x80000 (512 KiB)
 +
* The xloader must be signed before copy it into the flash memory.
  
*Not fs formated (onenand raw)
+
You should copy the x-loader in the firsts 4 blocks (first 512 KiB), this is not a&nbsp;formated partition due the ROM not permits boot from a formated partition in flash, you should use flash_eraseall and [http://git.isee.biz/?p=pub/scm/writeloader.git;a=summary writeloader] for copy x-loader in the first blocks.
*Size: 0x80000 (512 KiB)  
 
*The xloader must be signed before copy it into the flash memory.
 
  
You should copy the x-loader in the firsts 4 blocks (first 512 KiB), this is not a&nbsp;formated partition due the ROM not permits boot from a formated partition in flash, you should use flash_eraseall and [http://git.igep.es/?p=pub/scm/writeloader.git;a=summary writeloader] for copy x-loader in the first blocks.
 
 
<pre>Suggested procedure:
 
<pre>Suggested procedure:
  
Line 332: Line 350:
  
 
Erase and copy the x-loader into the first flash partition (mtd0):
 
Erase and copy the x-loader into the first flash partition (mtd0):
$nand_eraseall /dev/mtd0
+
flash_eraseall /dev/mtd0
$writeloader -i &lt;x-loader.bin.ift&gt; -o /dev/mtd0
+
writeloader -i &lt;x-loader.bin.ift&gt; -o /dev/mtd0
</pre>  
+
</pre>
==== <span id="1299156619608S" style="display: none;">&nbsp;</span>Boot Partition ====
+
====<span id="1299156619608S" style="display: none;">&nbsp;</span>Boot Partition====
 +
* filesystem used jffs2 zlib/lzo compressed filesystem.
 +
* Suggested size: 0xC00000 (12 MiB).
  
*filesystem used jffs2 zlib/lzo compressed filesystem.  
+
X-Loader only support jffs2 partitions for boot partition.
*Suggested size: 0xC00000 (12 MiB).
+
 
 +
<u>Create the boot partition:</u>
  
X-Loader only support jffs2 partitions for boot partition.
 
  
<u>Create the boot partition:</u>
 
  
<u></u>
 
 
<pre>Suggested procedure:
 
<pre>Suggested procedure:
  
 
Erase all mtd1 content:
 
Erase all mtd1 content:
$flash_eraseall /dev/mtd1
+
flash_eraseall /dev/mtd1
  
 
Create your partition:
 
Create your partition:
$mount -t jffs2 /dev/mtdblock1 /mnt
+
mount -t jffs2 /dev/mtdblock1 /mnt
</pre>  
+
</pre>
<u>Next uses:</u>  
+
<u>Next uses:</u>
  
<u></u>You can mount the partition over your boot directory in the rootfs  
+
<u></u>You can mount the partition over your boot directory in the rootfs
<pre>$mount -t jffs2 /dev/mtdblock1 /boot</pre>
 
You can use the cp command for copy your kernel and igep.ini configuration file.
 
<pre>$cp igep.ini /boot
 
$cp zImage /boot</pre>
 
==== Rootfs Partition  ====
 
  
*fs (your prefered fs supported by linux, maybe a good choice it should be ubifs)
+
<pre>mount -t jffs2 /dev/mtdblock1 /boot</pre>
*Size, all or you can create more partitions if you wish ...&nbsp;:)
+
You can use the cp command for copy your kernel and igep.ini configuration file.
  
== Boot Priority  ==
+
<pre>cp igep.ini /boot
 +
cp zImage /boot</pre>
 +
====Rootfs Partition====
 +
* fs (your prefered fs supported by linux, maybe a good choice it should be ubifs)
 +
* Size, all or you can create more partitions if you wish ...&nbsp;:)
  
XLoader first try load from mmc and if it fails then try from OneNand.<br>
+
==Boot Priority==
 +
XLoader first try load from mmc and if it fails then try from OneNand.
  
'''MLO (x-loader), igep.ini, zImage from MMC'''<br>If all it's present in the mmc it don't try to boot from Onenand.<br>
+
'''MLO (x-loader), igep.ini, zImage from MMC'''<br />If all it's present in the mmc it don't try to boot from Onenand.
  
'''MLO (x-loader) in MMC, igep.ini and zImage in Onenand.'''<br>If only MLO it's provided this one try to load the other information from&nbsp;the Onenand.  
+
'''MLO (x-loader) in MMC, igep.ini and zImage in Onenand.'''<br />If only MLO it's provided this one try to load the other information from&nbsp;the Onenand.
  
It means that XLoader always try to load the information from MMC and if it fails then try to load from OneNand.  
+
It means that XLoader always try to load the information from MMC and if it fails then try to load from OneNand.
  
== Configuration file: igep.ini ==
+
==Configuration file: igep.ini==
 +
[http://en.wikipedia.org/wiki/INI_file This entry in wikipedia] can help you how a ini file it's structured.
  
[http://en.wikipedia.org/wiki/INI_file This entry in wikipedia] can help you how a ini file it's structured.  
+
Inside the sources/scripts directory you can found a [http://git.isee.biz/?p=pub/scm/igep-x-loader.git;a=blob;f=scripts/igep.ini;h=ce093fe80c81d8888bf79464f847059b312bba83;hb=refs/heads/master igep.ini] example file.
  
Inside the sources/scripts directory you can found a [http://git.igep.es/?p=pub/scm/igep-x-loader.git;a=blob;f=scripts/igep.ini;h=4127b005e8ac1763804d709416a52cc6d850768e;hb=refs/heads/master igep.ini] example file.
+
The actual XLoader can handle two kind tags:
  
The actual XLoader can handle two kind tags:
+
[kernel] Used for internal XLoader setup.
  
[kernel] Used for internal XLoader setup.<br>
+
[kparams] Used for pass the linux kernel parameters.
  
[kparams] Used for pass the linux kernel parameters.
+
===TAG: [kernel]&nbsp;===
 
 
=== TAG: [kernel]&nbsp; ===
 
 
<pre>  1 [kernel]
 
<pre>  1 [kernel]
 
   2 kaddress=0x80008000
 
   2 kaddress=0x80008000
Line 398: Line 415:
 
   9 MachineID=xxxx Where Machine ID = 2344 for IGEPv2,  ID = 2717 for IGEP COM Module, ID = 3203 for IGEP COM PROTON   
 
   9 MachineID=xxxx Where Machine ID = 2344 for IGEPv2,  ID = 2717 for IGEP COM Module, ID = 3203 for IGEP COM PROTON   
 
   10 Mode=&lt;kernel&gt; or &lt;binary&gt;
 
   10 Mode=&lt;kernel&gt; or &lt;binary&gt;
 
+
  11 dss=&lt;0 or 1&gt; Enable or Disable Video Output
</pre>  
+
  12 dss_color=&lt;0x00FF8000&gt; Write your desired color in hex value
{| cellspacing="1" cellpadding="1" width="800" border="1"
+
  13 dss_bitmap=&lt;filename&gt; Raw display image</pre>
 +
{| border="1" width="800" cellspacing="1" cellpadding="1"
 +
|-
 +
||Parameter Name
 +
||Description
 +
||Default Value
 +
||Comments
 +
|-
 +
||kaddress
 +
||Kernel copy address
 +
||0x80008000
 +
||hex memory address
 +
|-
 +
||rdaddress
 +
||Ram Disk location address
 +
||0x81600000
 +
||hex memory address
 
|-
 
|-
| Parameter Name
+
||serial.low
| Description
+
||Serial number (low part)
| Default Value
+
||0 - 99999999
| Comments
+
||numeric
 
|-
 
|-
| kaddress
+
||serial.high
| Kernel copy address
+
||Serial number (high part)
| 0x80008000
+
||0 - 99999999
| hex memory address
+
||numeric
 
|-
 
|-
| rdaddress
+
||revision
| Ram Disk location address
+
||Revision ID
| 0x81600000
+
||0 - 9999
| hex memory address
+
||numeric
 
|-
 
|-
| serial.low
+
||kImageName
| Serial number (low part)
+
||Kernel, binary image name
| 0 - 99999999
+
||N/A
| numeric
+
||Kernel or binary image name
 
|-
 
|-
| serial.high
+
||kRdImageName
| Serial number (high part)
+
||Ramdisk
| 0 - 99999999
+
||N/A
| numeric
+
||Ram Disk image name
 
|-
 
|-
| revision
+
||MachineID
| Revision ID  
+
||Machine ID (kernel ID)
| 0 - 9999
+
||2717
| numeric
+
||2717 (IGEP COM Module) | 2344 IGEPv2 | 3203 (IGEP COM PROTON)
 
|-
 
|-
| kImageName
+
||Mode
| Kernel, binary image name
+
||Boot Mode
| N/A
+
||kernel
| Kernel or binary image name
+
||kernel=linux kernel / binary=boot binary image
 
|-
 
|-
| kRdImageName
+
||dss
| Ramdisk
+
||Enable Video
| N/A
+
||0
| Ram Disk image name
+
||0 = Disable, 1 Enable Video Output
 
|-
 
|-
| MachineID
+
||dss_color
| Machine ID (kernel ID)
+
||Video Color
| 2717
+
||0x00FF8000
| 2717 (IGEP COM Module) &#124; 2344 IGEPv2 &#124; 3203 (IGEP COM PROTON)
+
||Solid Color
 
|-
 
|-
| Mode
+
||dss_bitmap
| Boot Mode
+
||Video Bitmap Image
| kernel
+
||string
| kernel=linux kernel / binary=boot binary image
+
||filename with desired image
 
|}
 
|}
  
=== TAG:&nbsp;[kparams] ===
+
===TAG:&nbsp;[kparams]===
 +
In this tag you can add all kernel parameters that you need, this is only an example:
  
In this tag you can add all kernel parameters that you need, this is only an example:
 
 
<pre>  10 [kparams]
 
<pre>  10 [kparams]
 
   11 console=ttyS2,115200n8
 
   11 console=ttyS2,115200n8
Line 472: Line 505:
 
Also remember you can comment any line using ';' or '#' characters.
 
Also remember you can comment any line using ';' or '#' characters.
  
</pre>  
+
</pre>
= FAQ  =
 
  
== How I can boot from NFS? ==
+
=FAQ=
 +
==How I can boot from NFS?==
 +
Yes, you should add below parameters in the kparams tag:
  
Yes, you should add below parameters in the kparams tag:
 
 
<pre>#smsc911x.mac fix your mac address
 
<pre>#smsc911x.mac fix your mac address
 
smsc911x.mac=0xb2,0xb0,0x14,0xb5,0xcd,0xde
 
smsc911x.mac=0xb2,0xb0,0x14,0xb5,0xcd,0xde
Line 485: Line 518:
 
root=/dev/nfs
 
root=/dev/nfs
 
# Set your NFS root path as &lt;server_ip&gt;:&lt;rootfs_path&gt;
 
# Set your NFS root path as &lt;server_ip&gt;:&lt;rootfs_path&gt;
nfsroot=192.168.2.105:/srv/nfs/linaro_minimal</pre>  
+
nfsroot=192.168.2.105:/srv/nfs/linaro_minimal</pre>
== How I can change the assigned kernel memory? ==
+
==How I can change the assigned kernel memory?==
 +
You can use the mem kernel variable as assign your desired kernel memory as:
  
You can use the mem kernel variable as assign your desired kernel memory as:
 
 
<pre>[kparams]
 
<pre>[kparams]
mem=430M</pre>  
+
mem=430M</pre>
== How I can add more kernel variables? ==
+
==How I can add more kernel variables?==
 +
You can add more variables creating a new variable - value pair under kparams tag as:
  
You can add more variables creating a new variable - value pair under kparams tag as:
+
<pre>boot_delay=0</pre>
<pre>boot_delay=0</pre>  
+
==How I can modify my MAC address?==
== How I can modify my MAC address? ==
+
You can assign your desired mac address using the variable&nbsp;smsc911x.mac as:
  
You can assign your desired mac address using the variable&nbsp;smsc911x.mac as:
+
<pre>smsc911x.mac=0xb2,0xb0,0x14,0xb5,0xcd,0xde</pre>
<pre>smsc911x.mac=0xb2,0xb0,0x14,0xb5,0xcd,0xde</pre>  
+
==How I can boot my board using ubi root filesystem?==
== How I can boot my board using ubi root filesystem? ==
+
You should use these parameters:
  
You should use these parameters:
 
 
<pre>ubi.mtd=2
 
<pre>ubi.mtd=2
  
 
root=ubi0:igep0020-rootfs
 
root=ubi0:igep0020-rootfs
  
rootfstype=ubifs</pre>  
+
rootfstype=ubifs</pre>
== How I can boot my board using a RAM disk?<br>  ==
+
==How I can boot my board using a RAM disk?==
 +
Use a RAMdisk it's fully supported.
  
Use a RAMdisk it's fully supported.
 
 
<pre>[kernel]
 
<pre>[kernel]
 
rdaddress=0x81600000
 
rdaddress=0x81600000
Line 517: Line 550:
 
root=/dev/ram0 rw
 
root=/dev/ram0 rw
  
</pre>  
+
</pre>
== Can I change the Processor frecuency? ==
+
==Can I change the Processor frecuency?==
 +
Yes you can, IGEP X-loader configures the processor to boot at 600 Mhz you can select a different boot speed using the variable mpurate as:
  
Yes you can, IGEP X-loader configures the processor to boot at 600 Mhz you can select a different boot speed using the variable mpurate as:
+
<pre>mpurate=800</pre>
<pre>mpurate=800</pre>  
+
If you don't force any frequency the linux kernel will put your processor at the maximum speed (ex: DM3730 will run at 1 Ghz)
If you don't force any frequency the linux kernel will put your processor at the maximum speed (ex: DM3730 will run at 1 Ghz)  
 
  
<br>
 
  
== How I can boot downloading the kernel using wget?  ==
 
  
The way for do that it's using one minimal kernel and RAMdisk (ex: using image-core-minimal from poky), the procedure can be more or less:  
+
==How I can boot downloading the kernel using wget?==
 +
The way for do that it's using one minimal kernel and RAMdisk (ex: using image-core-minimal from poky), the procedure can be more or less:
  
a) Copy your minimal kernel and your Ramdisk inside the boot partition.  
+
a) Copy your minimal kernel and your Ramdisk inside the boot partition.
  
b) Boot Normally from this kernel and Ramdisk, create one script your your desired command such wget http://192.168.15.22/mykernel.bin  
+
b) Boot Normally from this kernel and Ramdisk, create one script your your desired command such wget http://192.168.15.22/mykernel.bin
  
c) Execute the script when boot (you can do that adding the script to the init enviroment)  
+
c) Execute the script when boot (you can do that adding the script to the init enviroment)
  
d) if the downloading it's ok then execute the kexec call, first load the kernel and then pass to it your desired parameters.  
+
d) if the downloading it's ok then execute the kexec call, first load the kernel and then pass to it your desired parameters.
  
e) finally boot the new kernel with kexec.  
+
e) finally boot the new kernel with kexec.
  
<br>
 
  
== My board not boot and I don't know what to do ...  ==
 
  
When you test your IGEP X-loader, igep.ini file and kernel we suggest use a microsd card in front of use directly the flash nand, if your flash not boot copy all files in one microsd card and boot from there. You can check what happens removing some files from your microsd card for example if you wish test if your flashed kernel it's loaded in a right way then remove the kernel from your microsd card (note: use the same kernel name), IGEP X-loader first try load the file from your microsd card but if it's not found then it try to find the file in the flash.<br>
+
==My board not boot and I don't know what to do ...==
 +
When you test your IGEP X-loader, igep.ini file and kernel we suggest use a microsd card in front of use directly the flash nand, if your flash not boot copy all files in one microsd card and boot from there. You can check what happens removing some files from your microsd card for example if you wish test if your flashed kernel it's loaded in a right way then remove the kernel from your microsd card (note: use the same kernel name), IGEP X-loader first try load the file from your microsd card but if it's not found then it try to find the file in the flash.
  
== How I can upgrade my old kernel? ==
+
==How I can upgrade my old kernel?==
 +
Just copy the new one, the most secure way it's copy the new one and at end replace the igep.ini file with your new one.
  
Just copy the new one, the most secure way it's copy the new one and at end replace the igep.ini file with your new one.
+
<pre> mount -t jffs2 /dev/mtdblock1 /boot
<pre>$ mount -t jffs2 /dev/mtdblock1 /boot
 
  
$ cp newkernel.bin /boot
+
cp newkernel.bin /boot
  
$ cp igep.ini /boot</pre>  
+
cp igep.ini /boot</pre>
Use a different kernel name and you always can boot from your old one.  
+
Use a different kernel name and you always can boot from your old one.
  
= 6 Contribution &amp; Support &amp; Bugs Report =
+
=6 Contribution &amp; Support &amp; Bugs Report=
 +
Contributions to this project be welcome and you can send your patches to support@iseebcn.com&nbsp;or you can use the igep forum for it.<br />You can access to IGEP-x-Loader repository using our git at [http://git.isee.biz/?p=pub/scm/igep-x-loader.git;a=summary git.isee.biz]<br />IGEP IRC Channel: [http://webchat.freenode.net/?channels=igep http://webchat.freenode.net/?channels=igep]
  
Contributions to this project be welcome and you can send your patches to support@iseebcn.com&nbsp;or you can use the igep forum for it.<br>You can access to IGEP-x-Loader repository using our git at [http://git.igep.es/?p=pub/scm/igep-x-loader.git;a=summary git.igep.es]<br>IGEP IRC Channel: [http://webchat.freenode.net/?channels=igep http://webchat.freenode.net/?channels=igep]<br>
 
  
<br><span style="display: none;" id="1299156619619E">&nbsp;</span><br> <br>
+
{{Message/Forum}}
  
 
[[Category:Boot_loaders|X_Loader]]
 
[[Category:Boot_loaders|X_Loader]]

Latest revision as of 16:32, 7 May 2019

Contents

Summary

X-Loader, an initial program loader for Embedded boards based on OMAP processors.

Access to the latest version here and read the ISEE_Readme.txt for get the latest release information.

Why IGEP-Xloader

Some important reasons exist for using this bootloader on IGEP boards.

Security

This is one of the most important reasons why we develop this new IGEP X-loader. you will Probably know that flash devices get new bad memory blocks with normal usage that can make unusable or can damange the software residing inside the flash (ex: upgrading the software, copying a new kernel ... ), in these cases your board won't be usable anymore if you don't use a right nand filesystem that insures data integrity. Using the old schema we've 4 important partitions on flash without any protection, x-loader, u-boot, u-boot enviroment and kernel.

IGEP X-loader resolves this situation as the configuration and kernel files reside inside a jffs2 partition.

Maintenance

With the old schema 3 different software existed (x-loader, u-boot, kernel) that did exactly the same job, so you had to reconfigure the board, increasing the complexity of maintenance for the board system and provide a major bug source because we had to assure that all software was aligned with all changes. Also, from a second point of view, we did the job three times so the boot process was more complex and slow.

Easy to use

With this new approach use the software it's more easy to use, if you've the boot information stored inside a jffs2 partition you can use the linux kernel to access it directly without the use of any flash tool to modify the software (ex: using nandwrite it's to risky due to its inability to guarantee data integrity over the Nand Flash memory).

Upgrade faster and easy

Upgradint to a new kernel it's easier and faster, you only need to copy the new kernel inside the boot partition, copy your new igep.ini inside and reboot the board with all security.

Features and Limitations

Improvements & Modifications

  • Added malloc/free functionality.
  • Added mtd framework and onenand support, removed the old onenand drivers.
  • Added fs jffs2 support using mtd & onenand support (Read Only).
  • Added crc32 and zlib.
  • Jffs2 zlib compression support (Read Only).
  • Dual boot mmc & onenand with mmc highest priority.
  • Added Linux kernel boot directly (Support for 2.6.22 and highest version kernels)
  • Linux kernel supported images: vmlinuz, bzImage and zImage.
  • Support for loading Linux Ram disk (EXPERIMENTAL)
  • Added "ini" files parser.
  • The configuration resides in a plain txt (ini format file).
  • Support Windows & Linux formating ini files.
  • boot from mmc, onenand, or mix with mmc highest priority.
  • Added codeblocks project and compilation rules.
  • Added support for vfat32 extra names.
  • Configure TPS65950 voltage to 1.35V if it's used a DM3730 processor.
  • Added new parameter MachineID in kernel tag file, with it you can
  •     - configure the kernel board ID setup
  • Added new parameter buddy for kernels 2.6.35.y and 2.6.37.y
  • Optimize some LPDDR Memory configuration values
  • Removed some OneNand Debug information
  • Removed some FAT incorrect warnings
  • Added Support Initial Ram disk
  • Reconfigure Makefile options
  • Support Kernels 2.6.35, 2.6.37, 3.6.4
  • Added support for boot ARM binary files (such u-boot or QNX kernel)
  • Support for Numonyx, Micron and hynix POP Memories.
  • Memory autodetection.
  • Added GPTimer functionality.
  • Support Numonyx, Micron and hynix memories.
  • DMA Copy support
  • Omtimized memcpy and memset functions.
  • DSS Video driver.
  • Support ISEE toolchain yocto 1.2 based.

Limitations

  • The ini configuration file it's limited to max size: 16 KiB
  • Kernel Command line parameters it's limited to: 4 KiB
  • Malloc it's hardcode limited to 32 MiB.
  • Video is limited to 1024 x 768 x 16 bits.
  • Video Memory is limited to 1280 x 720 x 32 bits.

TODO

  • Remove compilation warnings.
  • System Rescue.
  • Improve boot selection and priority.
  • Remove unused code.

STATUS

  • Support:
    • IGEPv2 DM3730
    • IGEPv2 OMAP3530
    • IGEP COM MODULE DM3730
    • IGEP COM PROTON DM3730
    • IGEP COM MODULE AM3703

VERSION CHANGES

[2.1.0-1] This version only can be build with gcc linaro 4.5.2 other compilers be not supported.

[2.1.0-1] Removed some uncontrolled "printf" with incorrect information.

[2.1.0-1] Modified some code under __DEBUG__ option.

[2.1.0-1] Added Support for TPS65950-A3 initialization at 1.35V

[2.1.0-1] Added support for IGEP Module 0030

[2.1.0-1] Added support dynamic Machine ID selection (same xloader boot IGEPv2 & IGEP Module)


[2.1.0-2] ARM Compilation bug resolved


[2.1.0-3] Update SDRAM structure initialization

[2.1.0-3] Added support for Initial RAM disk

[2.1.0-3] Updated Initial RAM disk destination address


[2.2.0-1] Update Makefile structure

[2.2.0-1] Downgrade the boot processor speed


[2.3.0-1] Add NAND flash devices and Micron MT29CXGXXMAXX memories support

[2.3.0-2] Add Hynix NAND memorie and IGEP0032 support

[2.3.0-2] Added lzo compression schema.


[2.3.0-3] Add Support for execute ARM binaries [2.3.0-3] Bug Fixes related to I and D Cache


[2.4.0-1] Added Memory test feature

[2.4.0-1] Added some boot information

[2.4.0-1] New read_nand_cache function optimized for load from NAND

[2.4.0-1] BUG resolved: Refresh Setup in Micron & Hynix Memories

[2.4.0-1] BUG resolved: Reset Memory controller after initialize Malloc function

[2.4.0-1] BUG resolved: Resolve problems updating the flash content under jffs2


[2.4.0-2] Resolved Memory Autodetection

[2.4.0-2] Better hang board led control

[2.4.0-2] New read_nand_cache function optimized for load from OneNand

[2.4.0-2] Added Hw GPtimer functionality


[2.5.0-1] Added System DMA driver.

[2.5.0-1] Added optimized memcpy & memset functions.

[2.5.0-1] Improved boot speed.

[2.5.0-1] Improve NAND driver support.

[2.5.0-1] Auto x-loader.bin.ift and MLO generation.

[2.5.0-1] Added DSS video support.


[2.5.0-2] Fixed System DMA misconfiguration.

[2.5.0-2] Improve GPMC timming setup.

[2.5.0-2] Added DSS igep.ini variables.

[2.5.0-2] Added Support for new memory capacities.

[2.5.0-2] Auto x-loader.bin.ift and MLO generation.

[2.5.0-2] Minor bug fixes.


[2.5.0-3] platform.S: downgrade MPU boot clock from 1GHz to 800 MHz


[2.6.0-1] Remove OMAP35xx support

[2.6.0-1] New DMA driver, now can handle different DMA channels and transfers

[2.6.0-1] GPMC: Add support for use prefetch engine

[2.6.0-1] NAND: Added a new Nand driver

[2.6.0-1] NAND: Modify memory setup timmings


[2.6.0-2] DMA: disable dma_memcpy function due random kernel memory corruption

Pre-Compiled Binaries

Release Download link Support
2.6.0-2 igep-x-loader-2.6.0-2.tar.bz2 DM3730 Boards
2.5.0-2 igep-x-loader-2.5.0-2.tar.bz2 All OMAP3 Boards
2.4.0-2 igep-x-loader-2.4.0-2.tar.bz2 All OMAP3 Boards except IGEP COM MODULE AM3703
2.1.0-2 igep-x-loader-2.1.0-2.tar.bz2 All OMAP3 Boards except IGEP COM MODULE AM3703
2.1.0-3 igep-x-loader-2.1.0-3.tar.bz2 All OMAP3 Boards except IGEP COM MODULE AM3703
2.2.0-1 igep-x-loader-2.2.0-1.tar.bz2 All OMAP3 Boards except IGEP COM MODULE AM3703

Build Procedure

Build with ISEE SDK Yocto Toolchain 1.2

Download and Install the cross compiler if you not do it before.

Download the toolchain from this link and uncompress it as root in your / directory.

Hint: Remember setup the enviroment before build the source:

source /opt/poky/1.2/environment-setup-armv7a-vfp-neon-poky-linux-gnueabi

Download the sources from our git repository

git clone git://git.isee.biz/pub/scm/igep-x-loader.git

Get your desired tag / release

git checkout <your_desired_release> -b <your_name_release>

git checkout release-2.5.0-2 -b release-2.5.0-2-local

Setup the board build setup

make igep00x0_config

Build the software

make

Sign the binary x-loader (Only versions prior to 2.5.0-x)

You should execute contrib/signGP for sign the xloader.

contrib/signGP x-load.bin
The signed x-loader it's named: x-load.bin.ift

Build Native

Download from git repository

git clone https://git.isee.biz/arm-boot/igep-x-loader.git 

git checkout <your_desired_release> -b <your_name_release>

 git checkout release-2.5.0-2 -b release-2.5.0-2-local

Configure the board settings

make igep00x0_config
Edit the variable CFLAGS and add the option: -fno-stack-protector
CFLAGS := $(CPPFLAGS) -Wall -Wstrict-prototypes -fno-stack-protector

Build

make CROSS_COMPILE=arm-none-linux-gnueabi-

Sign the binary x-loader

You should execute contrib/signGP for sign the xloader.

contrib/signGP x-load.bin
The signed x-loader it's named: x-load.bin.ift

BOOT

The IGEP X-Loader must reside in the microSD card or in the Nand Memory.

MMC Boot

Prepare the microsd card

You can follow this howto about how prepare the microsd card or How to boot from MicroSD Card

Get a new microsd card and create two partitions, the first one must be fat16/32 and the second one can be formated in any format type supported by linux kernel.

Copy the files in the first (FAT) partition

In the first partition you must copy in this order:

  1. x-loader.bin.ift (you must rename this file to MLO before copy it) / This is a signed image using contrib/signGP tool
  2. x-loader configuration file igep.ini also you can change the configuration file name editing the file: igep00x0.h (#define IGEP_BOOT_CFG_INI_FILE "igep.ini")
  3. Your desired kernel image.

Load Order:

  48 /* Linux Images */
  49 const char* LinuxImageNames [] = {
  50         "kparam"   /* Use kparam first */
  51         "zImage",   /* jffs2 it's case sensitive */
  52         "zimage",   /* fat name it's not case sentitive */
  53         "vmlinuz",
  54         "bzImage",
  55         "bzimage",
  56         0,
  57 };

or you can set the name for your kernel in the configuration file using the tag: kImageName

Don't use a uImage kernel format (from uboot), only standard kernel formats be supported.

kernel build command example:

make ARCH=arm CROSS_COMPILE=arm-poky-linux-gnueabi- zImage modules

Second Partition

Copy all your rootfs in this second partition.

Also you can use the linaro 10.11 minimal image download the image and untar (as root) in your microsd card second partition.

Remember install the kernel modules in this partition.

Example:

sudo make ARCH=arm CROSS_COMPILE=arm-poky-linux-gnueabi- modules_install INSTALL_MOD_PATH=[path to your target rootfs]

Nand Boot

Nand Partitions

We've defined 3 partitions on the Nand Memory.

MTD partitions on "omap2-onenand":
(a) 0x000000000000-0x000000080000 : "X-Loader"
(b) 0x000000080000-0x000000c80000 : "Boot"
(c) 0x000000c80000-0x000020000000 : "File System"

X-Loader Partition

  • Not fs formated (onenand raw)
  • Size: 0x80000 (512 KiB)
  • The xloader must be signed before copy it into the flash memory.

You should copy the x-loader in the firsts 4 blocks (first 512 KiB), this is not a formated partition due the ROM not permits boot from a formated partition in flash, you should use flash_eraseall and writeloader for copy x-loader in the first blocks.

Suggested procedure:

Sign the x-loader before write it on the flash or microsd card.
Sign x-loader:
You should execute contrib/signGP for sign the xloader that resides inside the flash memory.
contrib/signGP x-load.bin
The signed x-loader it's named: x-load.bin.ift

Erase and copy the x-loader into the first flash partition (mtd0):
flash_eraseall /dev/mtd0
writeloader -i <x-loader.bin.ift> -o /dev/mtd0

Boot Partition

  • filesystem used jffs2 zlib/lzo compressed filesystem.
  • Suggested size: 0xC00000 (12 MiB).

X-Loader only support jffs2 partitions for boot partition.

Create the boot partition:


Suggested procedure:

Erase all mtd1 content:
flash_eraseall /dev/mtd1

Create your partition:
mount -t jffs2 /dev/mtdblock1 /mnt

Next uses:

You can mount the partition over your boot directory in the rootfs

mount -t jffs2 /dev/mtdblock1 /boot

You can use the cp command for copy your kernel and igep.ini configuration file.

cp igep.ini /boot
cp zImage /boot

Rootfs Partition

  • fs (your prefered fs supported by linux, maybe a good choice it should be ubifs)
  • Size, all or you can create more partitions if you wish ... emoticon

Boot Priority

XLoader first try load from mmc and if it fails then try from OneNand.

MLO (x-loader), igep.ini, zImage from MMC
If all it's present in the mmc it don't try to boot from Onenand.

MLO (x-loader) in MMC, igep.ini and zImage in Onenand.
If only MLO it's provided this one try to load the other information from the Onenand.

It means that XLoader always try to load the information from MMC and if it fails then try to load from OneNand.

Configuration file: igep.ini

This entry in wikipedia can help you how a ini file it's structured.

Inside the sources/scripts directory you can found a igep.ini example file.

The actual XLoader can handle two kind tags:

[kernel] Used for internal XLoader setup.

[kparams] Used for pass the linux kernel parameters.

TAG: [kernel] 

   1 [kernel]
   2 kaddress=0x80008000
   3 rdaddress=0x81600000
   4 serial.low=00000001
   5 serial.high=00000000
   6 revision=0001
   7 kImageName=zImage-test
   8 kRdImageName=rdImage-test
   9 MachineID=xxxx Where Machine ID = 2344 for IGEPv2,  ID = 2717 for IGEP COM Module, ID = 3203 for IGEP COM PROTON   
   10 Mode=<kernel> or <binary>
   11 dss=<0 or 1> Enable or Disable Video Output
   12 dss_color=<0x00FF8000> Write your desired color in hex value
   13 dss_bitmap=<filename> Raw display image
Parameter Name Description Default Value Comments
kaddress Kernel copy address 0x80008000 hex memory address
rdaddress Ram Disk location address 0x81600000 hex memory address
serial.low Serial number (low part) 0 - 99999999 numeric
serial.high Serial number (high part) 0 - 99999999 numeric
revision Revision ID 0 - 9999 numeric
kImageName Kernel, binary image name N/A Kernel or binary image name
kRdImageName Ramdisk N/A Ram Disk image name
MachineID Machine ID (kernel ID) 2717 2717 (IGEP COM Module) | 2344 IGEPv2 | 3203 (IGEP COM PROTON)
Mode Boot Mode kernel kernel=linux kernel / binary=boot binary image
dss Enable Video 0 0 = Disable, 1 Enable Video Output
dss_color Video Color 0x00FF8000 Solid Color
dss_bitmap Video Bitmap Image string filename with desired image

TAG: [kparams]

In this tag you can add all kernel parameters that you need, this is only an example:

  10 [kparams]
  11 console=ttyS2,115200n8
  12 ;earlyprintk=serial,ttyS2,115200
  13 mem=512M
  14 boot_delay=0
  15 ;mpurate=800
  16 ;loglevel=7
  17 omapfb.mode=dvi:1024x768MR-16@60\r
  18 smsc911x.mac=0xb2,0xb0,0x14,0xb5,0xcd,0xde\r
  19 ;ubi.mtd=2
  20 ;root=ubi0:igep0020-rootfs
  21 ;rootfstype=ubifs
  22 root=/dev/mmcblk0p2 rw rootwait

Also remember you can comment any line using ';' or '#' characters.

FAQ

How I can boot from NFS?

Yes, you should add below parameters in the kparams tag:

#smsc911x.mac fix your mac address
smsc911x.mac=0xb2,0xb0,0x14,0xb5,0xcd,0xde
# IP set you IP settings <local_ip>:<server_ip>:<gateway>:<network_mask>::<interface>:
ip=192.168.2.123:192.168.2.105:192.168.2.1:255.255.255.0::eth0:
# Set root as nfs
root=/dev/nfs
# Set your NFS root path as <server_ip>:<rootfs_path>
nfsroot=192.168.2.105:/srv/nfs/linaro_minimal

How I can change the assigned kernel memory?

You can use the mem kernel variable as assign your desired kernel memory as:

[kparams]
mem=430M

How I can add more kernel variables?

You can add more variables creating a new variable - value pair under kparams tag as:

boot_delay=0

How I can modify my MAC address?

You can assign your desired mac address using the variable smsc911x.mac as:

smsc911x.mac=0xb2,0xb0,0x14,0xb5,0xcd,0xde

How I can boot my board using ubi root filesystem?

You should use these parameters:

ubi.mtd=2

root=ubi0:igep0020-rootfs

rootfstype=ubifs

How I can boot my board using a RAM disk?

Use a RAMdisk it's fully supported.

[kernel]
rdaddress=0x81600000
kRdImageName=ramdisk.bin

[kparams]
root=/dev/ram0 rw

Can I change the Processor frecuency?

Yes you can, IGEP X-loader configures the processor to boot at 600 Mhz you can select a different boot speed using the variable mpurate as:

mpurate=800

If you don't force any frequency the linux kernel will put your processor at the maximum speed (ex: DM3730 will run at 1 Ghz)


How I can boot downloading the kernel using wget?

The way for do that it's using one minimal kernel and RAMdisk (ex: using image-core-minimal from poky), the procedure can be more or less:

a) Copy your minimal kernel and your Ramdisk inside the boot partition.

b) Boot Normally from this kernel and Ramdisk, create one script your your desired command such wget http://192.168.15.22/mykernel.bin

c) Execute the script when boot (you can do that adding the script to the init enviroment)

d) if the downloading it's ok then execute the kexec call, first load the kernel and then pass to it your desired parameters.

e) finally boot the new kernel with kexec.


My board not boot and I don't know what to do ...

When you test your IGEP X-loader, igep.ini file and kernel we suggest use a microsd card in front of use directly the flash nand, if your flash not boot copy all files in one microsd card and boot from there. You can check what happens removing some files from your microsd card for example if you wish test if your flashed kernel it's loaded in a right way then remove the kernel from your microsd card (note: use the same kernel name), IGEP X-loader first try load the file from your microsd card but if it's not found then it try to find the file in the flash.

How I can upgrade my old kernel?

Just copy the new one, the most secure way it's copy the new one and at end replace the igep.ini file with your new one.

 mount -t jffs2 /dev/mtdblock1 /boot

 cp newkernel.bin /boot

 cp igep.ini /boot

Use a different kernel name and you always can boot from your old one.

6 Contribution & Support & Bugs Report

Contributions to this project be welcome and you can send your patches to support@iseebcn.com or you can use the igep forum for it.
You can access to IGEP-x-Loader repository using our git at git.isee.biz
IGEP IRC Channel: http://webchat.freenode.net/?channels=igep


Igep forum.png If you have any question, don't ask to ask at the IGEP Community Forum or the IGEP Community Chat Irc.png