Personal tools

Log in

Changes

From IGEP - ISEE Wiki

Jump to: navigation, search

What can I do with IGEP RADAR LAMBDA

24,287 bytes added, 15:44, 31 January 2013
no edit summary
|Community_Guides_1={{#lst:Template:Links|IGEP_RADAR_LAMBDA_Community_Guides_1}}
|Community_Guides_2={{#lst:Template:Links|IGEP_RADAR_LAMBDA_Community_Guides_2}}
}}
=__TOC__  = Make your first measurement ==
To see the time domain IF radar signal in pseudo-real time, you can click on any of the yellow marked icons: You should see a wave similar to the picture, this is a dominant sinus.
<br>
== Compare Measurements ==
Now you can move the radar and make measurements over the wall at three different distances. For example, make a measurement with the radar at 2m distance and another measurement with the radar at 5m distance. You should get similar results as the following for 2m, 3m and 5m in order:<br>
<br>
== What is "Real Time" section ==
Now you can also make use of this web application demo feature.
You can see on next chapter examples of real traffic measurements where you can see how the radar track the vehicles measuring its position and distance.
== What is "Technical" section ==
This is the most interesting feature of the web application demo. By clicking on "Technical" icon you will get access to the heart of the radar. You will be able to make measurements with the modulation you want, by simply&nbsp; prompting the parameters on the rectangles.<br>
This will program the modulator with a 1ms modulation ramp. If you click the "RUN" button you will see in pseudo-real time the time domain or the frequency domain graph of the IF radar signal.
== What is "Files" section ==
This is a feature of the web application demo that will help you to manage the captured files in your measurements. By clicking on "Files" icon you will be able to check all the captured files and you will have the possibility to:
= Next Steps =
Congratulations! You have made your first measurements and started to understand how the radar works. You also know most of the features of the radar application demo.  Now you are able to do the next steps with the radar trying to adapt it to your specific application.  You can check if your application is similar to any of those related below and have a first approach on how you should configure your IGEP RADAR LAMBDA&nbsp; and which is the set upp you should use to make your measurements.<br>    = Radar Applications: Examples = this section will show you some real measurements and set-ups where IGEP RADAR LAMBDA can be successfuly used<br>  <br>  == Security == Security is one of the field applications of radar technology. IGEP RADAR LAMBDA has been used for these purposes, we want to show you here some of the results.<br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:SECURITY.jpg]]  <br>  Measurements of a person approaching by walking slowly the radar were made during 7 seconds, capturing 1.000 measurement files.  The modulation used was: -T 1600 -m 1000 -w  This modulation means:  -T 1600 ===&gt; program modulator with a 1,6ms modulation sweep time  -m 1000 ===&gt; make 1000 consecutive measurements  -w write ===&gt; and save the captured data into text files  <br> The 1.000 measurement files were captured with the radar and processed later with matlab on a PC.  FFT was made for each measurement obtaining the next 2D plot with matlab:  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:SECURITYs.jpg]]  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2D plot of 1.000 consecutive frequency domain radar signals detecting a person  Y axis: represents twice the distance<br>  X axis: represents the measurementfile number (so it can be considered as time)<br>  It can be noted that the person is detected from about 18m in the first measurements and is moving towards the radar until 14m distance in the last measurements. <br>  <br>  The next is a 3D plot of the same data, where Z axis is the FFT module level:<br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:SECURITY-Bs.jpg]]  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 3D plot of 1.000 consecutive "radar images" of a person  It can be shown that the person can be clearly tracked over the signal noise level (blue color).  20m range can be acceptable in most security systems but it is possible to apply CFAR processing techniques in order to increase the range over 100m. In addition, some more directive antennas could be developed to improve this parameter, and also developing a coherent system. Please contact [mailto:radar@iseebcn.com radar support] if you are interested on a development for an specific application.  <br>  <br>  == Traffic == Radar Traffic Control Systems is another interesting field of application for radar.<br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:TRAFFIC.jpg]]  IGEP RADAR LAMBDA has been used on this kind of applications, we would like to show you some of the measurements performed.  The next picture is a graph obtained making use of "Real Time" feature of the web radar application demo. It was obtained placing the radar on on a tripod close to a road on one side, with the radar oriented on a 15 to 30 meters field of view, as shown on below pictures:  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:SPEED-1.jpg]]&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Real measurements of 4 vehicles tracked in range (orange points) and speed (blue points)  Left Y Axis: Range in meters  Right Y Axis: speed in Km/h  X Axis: Time (hh:mm:ss)  <br>  The first vehicle was tracked from 15 to 25m at a speed of 50Km/h  The second vehicle was tracked from 18 to 33m at a speed of 59Km/h  A third vehicle was tracked from 20 to 28m at a speed of 52Km/h  Finally the fourth vehicle was tracked from 12 to 29m at a speed of 40Km/h  The bars indicate the range and speed in real time while the vehicles are being detected and cannot be shown in this picture but the graph reflects the history of the measurements. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:SPEED-RADAR-3.jpg]]  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Set up used to make the measurements: Radar fixed on a tripod oriented on one side of the road<br>  <br>  The modulation used to make this measurement was:  -T 5000 -l 80 -r<br>  -r&nbsp; ===&gt; it means we want to make consecutive measurements without limitation<br>  -T 5000 ===&gt; we apply a modulation sweep time of 5ms  -l 80 ===&gt; this is the signal level threshold. If the radar detects a signal over this level it will start making measurements until level returns below this threshold, when the radar will stop taking measurements. Each time it detects a signal over this threshold it will present the results. This parameter is very important in order we obtain only desired signals and not noise that would provide unreadable results.  There is not a fixed rule to obtain this threshold value because it depends on a lot of things, mainly of the modulation applied, the environment and the type of measurement, so the best is to make first some trials to adjust this value on an empirical way until the system works properly in your specific application and you obtain readable results.  You have to put this modulation parameters on the command block of the "Real Time" window and press enter.  <br>  '''<u>If you want to make faster measurements there is a second procedure to follow:</u>'''  open the console and execute these instructions:  ./radar_init.sh  ./radar -r -T 5000 -x 3000 -X 75000 -l 80 -H  <br>  radar.init ===&gt; it is necessary only the first time in order to initialise parameters of the radar application demo.  -H ===&gt; this parameter opens a socket in order the web server application can go faster reading results of the measurements.  -x 3000 ===&gt; this is a limitation on the processing range, in order to avoid false measurements due to close objects, closer than 3m.<br>  -X 75000 ===&gt; the same as before but applying for far objects, beyond 75m.  <br>  Then, you must open the socket on the web server by prompting this address:<br>  http://192.168.2.232:8000/realtime.html  <br>  Now the radar is ready to make faster measurements and get more than one measurement per vehicle.  <br>  <u>'''Note that each application needs to optimise its own parameters'''</u>. You can tune the parameters in order to adapt better to your application. For example you may be will get better results if you use a different modulation sweep time, may be -T 6000 is better for your application. Just try and get the best configuration for you, this is one of the purposes of the radar evaluation board.  <br>  The next graph is the result to orient the radar to another direction, thus increasing the detection range up to 60m.  Note that <u>'''an important thing to consider in this kind of measurements is the correct orientation of the radar'''</u>. This is something you also must empirically optimise for your specific application.  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:SPEED-2.jpg]]  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Measurements obtained orienting the radar to get a wider range, up to 60m<br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;  <br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:SPEED-RADAR-4.jpg]]  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Picture of the set up used: radar fixed on a tripod, oriented to de road and laptop to monitor the data in real time<br>  <br>  <br>  == Vibrations == Radar technology can also be used to make non contact remote measurements of building vibrations with high precision level.  This is a very interesting application on the construction area.<br>  IMPORTANT: An special software has been developed to this specific application and cannot be done with IGEP RADAR LAMBDA radar application demo. If you want to use this feature you must contact with&nbsp; [mailto:radar@iseebcn.com radar support] and we will study your case and make you an offer for an special software.<br>  <br>  The next picture show the construction that was monitored. It is a 344 m length viaduct, located in Sant Boi, over the Llobregat river. High speed trains pass over this bridge and the purpose of the measurements is to detect the vibration of the construction while trains are passing:  <br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:AVE BRIDGE SET UP-Bs.jpg]]  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Measurements set up: IGEP RADAR LAMBDA with special software is placed on the ground facing the top of the viaduct at a distance of 15m<br>  <br>  The next figure show the graphic obtained at the time the train was passing over the bridge. <u>'''This graphic can be shown in real time while train is passing over the bridge'''</u>. The data can be also captured for further processing. The graphic represents the relative position of the top of the viaduct over the ground. Yes, the structure moves 2mm, will you take the next high speed train? Do not worry, this is normal and you do not have to worry about it, this vibration response has a normal profile.  The advantage of this kind of measurements is that depending on the vibration wave profile engineers can detect structure problems, in the same way a doctor can check if your hearth is OK by lookintg at an EKG.<br>  <br>  [[Image:AVEMESURA-3-GRID-POINTS.jpg]]  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Vibration wave graph obtained on the measurement. It can be clearly shown the high precision of IGEP RADAR LAMBDA using special data processing<br>  <br>  Y Axis: Relative movement between viaduct top and ground in millimeters  X Axis. Time in seconds  <u>'''We can see from the graph that the radar technology has a precision of up to 50 micrometers'''</u>  <br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:AVEMESURA-3-Bs.jpg]]  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2D graph representing frequency domain measurements.<br>  Y Axis: Represents the sample number of the FFT of the captured data so, it is the Frequency axis  X Axis: represents the Captured file number, so it is the Time axis  This is another way to adapt present the results, by representing all the measurements FFT. This graph was obtained processing the captured data with matlab on a PC, they are not plotted by the radar equipment. It can be seen the peak due to the viaduct top reflection, and in the mid measurements it can be noted the vibration during the time the train is passing.  <br>  The figure below is a 3D representation of the same: FFT module of all the measurements. Look at the vibration in the central area.  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:AVEMESURA-3s.jpg]]  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3D graph representing frequency domain measurements.  <br>  == Tank Level Gauge == Radar technology can also be used to make non-contact precise tank level measurements.<br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:TANK.jpg]]  IGEP&nbsp;RADAR LAMBDA can be used on this kind of application when pressure and temperature conditions are not extreme and no chemical corrosive material is surrounding the equipment. You only have to install the radar at the top of the tank with the antenna facing the material surface contained on the tank and start measuring range.  In case of extreme environmental conditions it would be needed to develop special antenna that can support high pressures and temperatures. ISEE engineering team is able to develop such kind of devices, please contact with&nbsp; [mailto:radar@iseebcn.com radar support] if you want we study your personal case.  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:ANT-HORN.jpg]]  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Horn antenna to be used on extreme environmental conditions  <br>  <br>  <br>  <br>  <br>  '''The following applications require the development of an specific hardware and/or software to convert IGEP RADAR LAMBDA into a product. Please do not hesitate to'''  '''contact with&nbsp; '''[mailto:radar@iseebcn.com '''radar support''']'''if you want we study your personal case:'''  == Automotive == Radar technology is beign more and more used on automotive safety systems. IGEP RADAR LAMBDA can be an interesting first step in order to evaluate the feseability of such systems and the reference design for developing more specialised products.<br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:AUTOMOTIVE.jpg]]  == Speed Information Display == IGEP RADAR LAMBDA can be used in combination of a LED&nbsp;Display to develop Speed Information Displays:<br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp; [[Image:SPEED.jpg]]  == UAV Altimeter == IGEP RADAR LAMBDA can be used as short range altimeter for Unmanned Aerial Vehicles.<br>  The estimated range of detection is from 1 to 100meters so, helping on take off and landing of the UAV thanks to the centimeters precission of K-Band radar technology in comparison with the meters precision of traditional 4GHz altimeters used traditionally on avionics.  <br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:UAVs.jpg]]  == Marine Radar == Radar technology is widely used on marine detection systems. Traditional radars use pulsed modulations requiring high RF power levels, affecting power consumption and security of tripulation. FMCW Radar systems are bing more and more used in this applicationdue to its higher precission and its drastically reduced power consumption.  <br>  <br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:MARINE.jpg]]  == Smart Cities: Intelligent Lighting Systems == Radar technology can help to develop intelligent systems for cost and energy savings on Smart Cities systems applications. One example is the Intelligent Lighting System consisting on activation of a row of street lights only when the radar detects a person approaching the area, thus saving lot of illuminating hours with nobody in the street. IGEP RADAR LAMBDA could be integrated on this kind of energy efficient systems.<br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:LIGHTING.jpg]]<br>  <br>  <br>  <br>  == Sports == Radar technolgy can be also used in several sports where ball speed or trajectory is an important source of information to improve performance. Archers, Tennis and Golf players are becoming more and more dependants on this kind of information in order to improve their techniques.  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:SPORT.jpg]]  = Calibration = Radar calibration is done with special trihedral reflectors in order to measure its maximum range with precision. The next pictures show real 70m distance that radar is able to detect a 20cm trihedral reflector on a free space environment:<br>  <br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [[Image:TRIHEDRAL REFLECTOR-2ss.jpg]]  <br>  <br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;[[Image:TRIHEDRAL REFLECTORss. jpg]]  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<br> {{Navigation/IGEP Technology Devices Guides/Next Step
646
edits